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Abstract: The design of serially concatenated
codes has yet been dominated by optimizing asymp-
totic slopes of error probability curves. We propose
mutual information transfer characteristics for soft
in/soft out decoders to design serially concatenated
codes based on the convergence behavior of iterative
decoding. The exchange of extrinsic information is
visualized as a decoding trajectory in the Extrinsic
Information Transfer Chart (EXIT chart).
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1. Introduction

Bit error rate (BER) charts of iterative decoding
schemes exhibit a turbo cliff region [1] where com-
monly used bounding techniques fail to provide fur-
ther guidelines for code design. This paper proposes
extrinsic information transfer characteristics based
on mutual information to describe the flow of extrin-
sic information through the soft in/soft out decoders.
This proves to be particularly useful for optimizing
serially concatenated codes [2] in the turbo cliff re-
gion. A decoding trajectory visualizes the exchange
of extrinsic information between inner and outer de-
coder in the Extrinsic Information Transfer Chart
(EXIT chart). In [3] the EXIT chart was introduced
to provide design guidelines for constituent codes of
parallel concatenated codes (PCC). In this paper we
extend these results to serially concatenated codes
(SCC). We do not claim to present a rigorous proof of
stability and convergence of iterative decoding; how-
ever, simulation results suggest that the EXIT chart
predicts the best possible convergence behavior of
the iterative decoder for large interleaving depth.

2. Extrinsic Transfer Characteristics

2.1. Iterative Decoding of SCC

The iterative decoder for SCC is shown in Fig. 1.
For each iteration, the inner decoder (BCJR algo-
rithm [4]) takes channel observations Z and a pri-
ori knowledge A1 on the inner information bits and
outputs soft values D1. The extrinsic and channel
information E1 = D1 − A1 is passed through the

bit deinterleaver to become the a priori input A2 for
the outer decoder. The outer decoder feeds back ex-
trinsic information E2 = D2 − A2 which becomes
the a priori knowledge A1 for the inner decoder.
The variables Z, A1, D1, E1, A2, D2 and E2 de-
note log–likelihood ratios (L–values [5]). In this pa-
per we restrict ourselves to an overall code rate of
R = R1 · R2 = 1 · 1/2 = 1/2, and thus all Eb/N0–
values are given with respect to an R = 1/2 code.
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Figure 1: Encoder, channel and iterative decoder.

2.2. Transfer Characteristics of the
Inner Decoder

The inputs to the inner decoder are the noise–
corrupted channel observations Z and the a priori
knowledge A1 on the inner information bits. The
decoder outputs extrinsic and channel information
E1. From simulations of the iterative decoder we
observed that the extrinsic information L–values E2

(i. e. A1) as fed back from the outer decoder are
almost Gaussian distributed. Additionally, large in-
terleavers keep the a priori L–values A1 fairly un-
correlated over many iterations. Hence, it seems ap-
propriate to model the a priori input A1 as an in-
dependent Gaussian random variable nA1 with vari-
ance σ2

A1
and mean zero. In conjunction with the

known transmitted inner information bits x ∈ {±1}
we write

A1 = µA1 · x+ nA1 . (1)
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Since A1 is supposed to be an L–value based on
Gaussian distributions it can be shown [5] that µA1

must fulfill µA1 = σ2
A1

/2, and thus the conditional
probability density function (PDF) is

pA1(ξ|X = x) =
e
− (ξ−

σ2
A1
2

·x)2

2σ2
A1√

2π σA1

. (2)

To measure the information content of the a priori
knowledge, mutual information IA1 = I(X ;A1), 0 ≤
IA1 ≤ 1, between transmitted inner information bits
X and the L–values A1 is used [6].

IA1 =
1

2
·

∑
x=−1,1

∫ +∞

−∞
pA1(ξ|X = x)

× ld
2 · pA1(ξ|X = x)

pA1(ξ|X = −1) + pA1(ξ|X = 1)
dξ (3)

With (2), equation (3) becomes

IA1(σA1 ) =

+∞∫
−∞

e
−

(ξ−σ2
A1

/2)2

2σ2
A1√

2π σA1

· (1− ld
[
1 + e−ξ

])
dξ .

(4)
For abbreviation we define

J(σ) := IA1(σA1 = σ) (5)

lim
σ→0

J(σ) = 0, lim
σ→∞ J(σ) = 1, σ > 0 (6)

The function J(σ) cannot be expressed in closed form.
It is monotonically increasing and thus reversible.
Mutual information is also used to quantify the ex-
trinsic output IE1 = I(X ;E1); it is computed ac-
cording to (3), but now using the extrinsic output
PDF pE1 . Viewing IE1 as a function of IA1 and the
Eb/N0–value, the inner extrinsic information trans-
fer characteristics are defined as

IE1 = T1(IA1 , Eb/N0). (7)

To calculate the characteristic T1(IA1 , Eb/N0) for a
desired (IA1 , Eb/N0)–input combination, the distri-
butions pE1 are most conveniently determined by
means of Monte Carlo simulation. For this, the inde-
pendent Gaussian random variable of (1) with σA1 =
J−1(IA1) is applied as a priori input to the inner
decoder of interest. Fig. 2 shows transfer charac-
teristics of some inner rate 1 (i. e. all coded bits)
recursive convolutional codes at Eb/N0 = 1dB with
feedback polynomial Gr and feedforward polynomial
G. For most codes with G being different from a
power of two, we find IE1(IA1 = 0) ≈ 0 which makes
them inappropriate for use as inner codes in an iter-
ative decoding scheme, as will become more obvious
in Section 3.
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Figure 2: Extrinsic information transfer characteris-
tics of some inner rate 1 decoders at Eb/N0 = 1dB.

2.3. Transfer Characteristics of the
Outer Decoder

The outer extrinsic transfer characteristic is

IE2 = T2(IA2) (8)

and describes the input/output relationship between
outer coded input A2, and outer coded extrinsic out-
put E2. It is not dependent on the Eb/N0–value.
It can be computed by assuming A2 to be Gaussian
distributed and applying the same equations as pre-
sented for T1 in Section 2.2.

Extrinsic transfer characteristics of rate 1/2 codes
for a wide range of different memories are given in
Fig. 3. The legend in the upper left corner denotes
systematic block codes of different lengths (N − K
parity checks), the legend in the lower right corner re-
cursive systematic convolutional codes. It is straight-
forward to show that the transfer characteristic of an
outer repetition code is IE2 = IA2 (diagonal line).
All transfer characteristics seem to cross in a single
point at (0.5, 0.5). Note that the axes are swapped:
IA2 is on the ordinate, IE2 on the abscissa.

3. Extrinsic Information Transfer Chart

To visualize the exchange of extrinsic informa-
tion, we plot both decoder characteristics into a sin-
gle diagram, which is referred to as Extrinsic Infor-
mation Transfer Chart. On the ordinate, the inner
extrinsic and channel output IE1 becomes the outer
a priori input IA2 (interleaving does not change mu-
tual information). On the abscissa, the outer ex-
trinsic output IE2 becomes the inner a priori in-
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Figure 3: Extrinsic information transfer characteris-
tics of some outer rate 1/2 decoders.

put IA1 . Provided that independence and Gaussian
assumptions hold for modelling extrinsic informa-
tion (a priori information respectively), the trans-
fer characteristics of Section 2 should approximate
the true behavior of the iterative decoder. More-
over, the decoding trajectory that can be graphically
obtained by simply drawing a zigzag–path into the
EXIT chart (bounded by the decoder transfer char-
acteristics) should match with the trajectory com-
puted by simulations.

Fig. 4 shows trajectories of iterative decoding at
Eb/N0 = 1dB, 1.1dB and 1.5dB as obtained from
simulations of the iterative decoder. For this ex-
ample, the code concatenation consists of an inner
differential encoder and an outer rate 1/2 recursive
systematic convolutional code of memory 2. Note
that the inner and outer transfer characteristics are
just taken from Fig. 2 and Fig. 3. For Eb/N0 = 1dB
the trajectory gets stuck after about four iterations
since both decoder characteristics do intersect. For
Eb/N0 = 1.1dB the inner transfer characteristic has
been raised just high enough to open a narrow tunnel
for the trajectory to “sneak through” and to converge
towards low BER (≈ 10−6). At Eb/N0 = 1.5dB, less
iterations are needed to converge towards low BER.
This “turbo cliff”–effect is illustrated by the corre-
sponding BER chart in the lower right corner.

The simulated trajectories match with the char-
acteristics very well, owing to the large interleaver
which ensures that the independence assumption of
(1) holds over many iterations; in addition to that,
the robustness of the mutual information measure
allows to overcome non–Gaussian distributions of a
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Figure 4: EXIT charts with iterative decoding tra-
jectories at Eb/N0 = 1dB, 1.1dB and 1.5dB; corre-
sponding BER chart; interleaver size 400000 outer
coded bits.

priori information. It should be emphasized, how-
ever, that the decoding trajectory is a simulation re-
sult purely based on measurements of mutual infor-
mation as taken from the output of the respective
decoder. Only to calculate the transfer characteris-
tics of individual decoders we were sought to impose
the Gaussian and independence assumption on the a
priori inputs A1, A2.

4. Code Design with the EXIT Chart

The code concatenation of Fig. 4 has its turbo
cliff slightly above 1dB. In this Section we modifiy
the inner and outer codes of our previous example
to study the convergence properties of the new con-
catenation in the EXIT chart.

We observed that one can raise the beginning of
the inner decoder transfer characteristic (at the cost
of sacrificing a little towards the end) by substituting
every other coded bit by its systematic counterpart
to obtain a “systematically doped” inner recursive
convolutional code of rate 1 with half of the bits be-
ing systematic. Then, convergence is already pos-
sible at 1dB (Fig. 5). For comparison, the transfer
characteristic of the “undoped” inner code is given
as a dashed line.

Another alternative to lower the turbo cliff posi-
tion of the code concatenation of Fig. 4 is to steepen
the slope of the outer characteristic by, e. g., using
the rate 1/2 block code of length N = 8 coded bits of
Fig. 3. Then we achieve convergence at 1dB as well
(Fig. 6). For comparison, the transfer characteristic
of the outer memory 2 convolutional code is given as
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Figure 5: EXIT chart with decoding trajectory at
Eb/N0 = 1dB; inner systematically doped code; in-
terleaver size 400000 outer coded bits.
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Figure 6: EXIT chart with decoding trajectory at
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a dashed line.
We performed a code search over inner rate 1

recursive convolutional codes up to memory 6. In
combination with an outer repetition code (diago-
nal line in EXIT chart), a code with “early” conver-
gence turns out to be of memory 4, with polynomials
(Gr , G) = (037, 020). A turbo cliff just below 0.5dB
demonstrates that we can find SCC with iterative
decoders operating close to Shannon’s capacity limit

(0.19dB). As the code search was performed based on
transfer characteristics of individual inner codes, we
verified the results by simulating the corresponding
iterative decoder (see decoding trajectory at 0.5dB in
Fig. 7). Contour lines indicate where a BER of 0.1,
0.01 and 0.001 is reached, compare to (23) of [3].
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Figure 7: EXIT chart with iterative decoding tra-
jectory at Eb/N0 = 0.5dB; outer repetition code;
interleaver size 400000 outer coded bits.
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