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Abstract

We present multidimensional mapping (MdM) as a generalizag how to assign input bits to symbol vectors for

spatial multiplexing multiple-input, multiple-output (MO) transmission with iterative detection. Design goal is

to minimize bit error floor by means of EXIT chart and pairwesgor probability under the assumption of perfect

a priori knowledge at the demapper. We propose fiectve description of MdM based on block code generator
matrices. The presented MdMs achieve minimal error floor tango cliff positions close to capacity limit.

1 Introduction description of MdMs based on block code generator
matrices. Using EXIT chart [8] and bounds on pairwise

Utilization of multiple antennas at both transmitter and €rror probability (PEP) for BICM [9], we propose op-

receiver allows high data rates as well as reliable com-timized MdMs for several configurations, which allow

munication. Multiple-input, multiple-output (MIMO) for transmission with minimal error floor and turboftli

systems are therefore still a field of intensive research.Positions close to capacity limit. . _

In [1] the potential for enormous capacity gains was [N Section 2 we describe the BICM spatial multi-

first adressed. High data rates can be achieved by spatig?€xing transmitter, the channel model and the iterative

multiplexing, e.g. with the V-BLAST architecture [2].  receiver. Section 3 outlines MdMs and encoding using
As in most disciplines, a tradéetween complexity generator matrices. Design critria are derived in Sec-

and performance of a’system has to be made. Ap-tion 4 and optimized MdMs are presented, which are

proaching capacity inherently demands more sophisti-Veriﬁe‘d by sim_ulat_ions re.sults in Section 5, followed

cated transmitter and to an even greater extend receivePY the conclusion in Section 6.

schemes. One way to improve performance is iterative

MIMO detectio_n, oftf—:-n _referred to as_bit-interleaved 2 System Model

coded modulation with iterative detection (BICM-ID) _

for MIMO. Unless the outer code is of low rate these 2.1 Transmitter

schemes typically ster from a serious error floor. De-  tpg yransmitter in Fig. 1 consists of a bit source with
creasing the error floor can be achieved by code doping., it sequencer. These information bits are first
where a rate 1 inner recursive encoder is applied [3], .oy olutionally encoded by an outer encoder of rate
[4]. As a drawback, an additional maximum a posteriori Re, then randomly bit-interleaved with an interleav-
(MAP) decoder is required at the receiver. Alternatively, ing depth S. Input to the MdM is row vectorx =
mappings optimized for BICM—ID can be l.J_sed. [5]. (X1..... Xom) comprising QM bits. M is the number
As opposed to Gray mapping, symbolsfeling in ¢ transmit (tx) antennas an@® is the number of
one bit should have a large Euclidean distance. Thisy;¢ per complex symbol. The symbol column vector
is justified by the availability of a priori information. s=(s1,...,sw)" is transmitted, where each complex
No additional overhead is required and error floor is symbo’l 8 ,j €{L....M}, has m,ean poweEs. ()T de-
slightly dec.reased. Another way to decrea;e bit EITor notes transposition. An MdM is defined by the relation
rate (BER) is to employ an optimal (\./ector?W|se) MAP s=p(x), with u() being the multidimensional mapping
demapper. For most MIMO scenarios this would be fntion, and is examined more closely in Section 3.
prohibitively complex, but close-to-optimum sphere de-

coding algorithms exist with lower complexity, e.g. [6],
[7]. bit interleaver ST #1

source ~ multi-
dimensiona| .

In this paper we examine the conjunction of op- Q_“.encodc X' 11 B+ mapping | -
timized mappings with iterative MAP demapping for (MdM) ﬁ#M
improved MIMO transmission. Multidimensional map-
ping (MdM) was proposed in [3] and brute-force search Fig. 1: MIMO transmitter with multidimensional mapper
optimization was performed. We derive affegtive
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2.2 Channel model extrinsic L-value Lg 1 (%, r)=E; as [10]:
We use the widely accepted frequency flat fading 3 p(rly(i))-exp(f([k]-L A,l[k])
MIMO equivalent baseband model, described by XeXk1
Le1(X.r)=In ) (A 5 ) 3
Priu(X)) - expiXp - La,
r=Hs+n . (1) $eXeo K =ALK
r= (rl,___,rN)T is the received symbol column vector, where Xyp is the set of all row vectork for which
wherer; is the component for antennd € {1,...,N}, X =b,be{0,1}, andX(y - L a1 is the scalar product of
and N is the number of receive (rx) antennas. The both vectors without theth elementA;, D1 andE; are
channel matrix is given b = (h1...hy), with hj = shorthand notations. Othé&rvalues occuring in Fig. 2
(hl,j,...,hN,j)T. The impulse responsh,j from trans- are dejined similquy. Thel probability density furlctions
mitter j to receiveri is modelled as a zero-mean, com- P(rlu(X)) are multidimensional Gauss-functions:
. . . 2 o\ (12
lex Gaussian random variable satisfyigag|h; i }: 1 - 1 [Ir = Hu(X)||
P dom ve gl }- PUr) = s exe - REE) g
(i.e., the channel is passive). All entriesdfare i.i.d., (7No) No

change with each channel use and are assumed 10 bggier deinterleavingE; is used as a priori information

perfectly known at the receiven = (ng.....nn)" is an A, for the MAP decoder, which outputs a posteribyi
additive noise column vector with componemisat  y51yesD, of coded bits. In the first pass through the
receive antenna, which are complex AWGN, each gemapper the a prioti-valuesA; are set to zero, while
with zero-mean and varianee. This means that real  j, the following iterationsE, = D, — A, are interleaved
agd imaginary part ofy are Gaussian with variance gnq the resulting a priori informatiof; is fed back.
/2= No/2 each. We considen to be uncorrelated,  After a certain number of iterations, a hard decision

. H _ 2 . . . . . . . . .
1.e., Ejnn }— ol Inis the |dent|ty.rT1atr|x of iz on the a posteriori-valuesD, of the information bits
and ()" denotes conjugate transposition. We define theyijelds the estimate on the transmitted data.

signal-to-noise ratio (SNR) as To reduce complexity of computation of (3), which is
E M- Es-N Es-N exponential withQM, it would be reasonable to apply
SNR= — = 2 suboptimal sphere decoding for practical implementa-

No Re-M-Q-No Re-Q-orj tions [7]. In this paper we use optimal MAP demapping
whereEy is the transmitted energy per information bit to obtain lower bounds on BER.
at the receiver andlly the noise power spectral density.
Note that (2) is the SNR at the total receiver and not

at one receiver antenna element. 3 Multidimensional Mappmgs

2.3 Receiver 3.1 Principle

] ] o . o We first consider conventional symbol-wise mapping,
The iterative receiver is depicted in Fig. 2. which is applied, e.g., in the V-BLAST architecture
[2]. We write the input vector a = (X1,...,Xm),
#ﬁ with x;j = (_le,...,ij),j e{1,...,M}. For a giv_en signal
constellation, the complex symbsj, transmitted over
.| vector-wise MAP demapper antennaj, is determined byQ bits in vectorx; only.
- | (soft input soft output demappey) | Real and imaginary part of; are obtained by a two-
#ﬁ@, dimensional (2d) mapping, denoted ag= u,,(X]).
We can thus write the transmit vector as= u(x) =
deinterleaver dgcailgcijon ]E”Zd.(xl)’(él'__’)NZd(XM)?T' A linear deteCto(; appli?im\z/lgg)
. D’ — orcing or minimum mean squared error
-El II e d’,‘aﬂc’zze—z’ f - equalization, followed by symbol-wise MAP demap-
ping. Vector-wise MAP demapping is also applicable
D> and is known to be the optimal detection scheme.
For the following example we defingq(.) to be a bi-
nary phase shift keying (BPSK) mapping functiap£
1), i.e., u2d(0) = — VEs and upq(1) = + VEs. Although
Fig. 2: Receiver structure for iterative detection BPSK is a one-dimensional mapping, we maintain the
notation uzq4(.). An MdM generalizes a mapping by
The vector-wise MAP demapper computes for each allowing for any one-to-one correspondence from bit
bit x¢, ke {1,...,QM}, a posteriorL-valuesLp 1 (X |r )= vectorx to symbol vectos= u(x). However, we restrict
D1 out of channel observation and a prioriL-values ourselves to the case, where all symbsjsare drawn
Lag1= (LA,l(xl),...,LM(XQM))T, fed back from the from the same modulation alphabet. Table | shows an
outer MAP decoder. Subtraction bf 1 (X)=As yields MdM for M = 2 transmit antennas and BPSK symbols.
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TABLE |: Example for MdM: M = 2

transmit antennas and BPSR),= 1 o%oo 0%01__ 1%01 1%00

X1 | X2 S1 S CL | C (0110

0 0 -vEs | —VE 0O 1

110 vEs vEs 0110 0111|1111 1110

+vVEs | + VEs 1 1 ° I ‘./_ °
0| 1| +VE |-VvEs| 1]0 e N e S Re(s))
— — ]

L]t -VE|+VE]JO]1 001Q 0011 1011 1010
The multidimensional mapper uses the look-up table (0001)
to allocateQM input bits to a transmit symbol vector T
s, €.9.,14((1,0)) = (+ VEs,+ VEs)". Thus, linear ZF or 0000 0001 1001 1Q00
MMSE detection is not possible anymore. The look- (0010
up table consists of ! rows. For smallQ and M,
the table is manageable. However, for lar@eand M, Fig. 3: Reference mappings for 16-QAM: Grayy(.) and
its size gets very large, e.g., f{@ =2 andM = 4, we modified mappings,(.) (with changes in brackets)

would have 256 rows. We thus derive an alternative

description of MdM in the following subsection. Note ] ]

that optimization of MdMs by brute-force search is With code rate 1. The encoded bitsare input to a

literally intractable, since there existQ®)! different ~ conventional V-BLAST transmitter, wher@ bits are

possibilities to define the look-up table. Wih=2 and ~ @ssigned to complex, i.e., two-dimensional symbols,

M = 4, there are about 28 different look-up tables. which are then serial-to-parallel converted before trans-
mission over the antennas.

3.2 MdM generation

In many cases, an MdM can be described by ﬁ#l
(/1 ( ))T (5) X ekigglé- C,|mappe ST SP |
s=pu(X) = C1),..., c , — e ) :
u(X) = (u2d(Ca), ..., u2d(Cm < p2a(’) B
c=(c,...,.cm) =X-G (6)
. Fig. 4: Alternative scheme for MdM
Cj = (Cjn..-.Cjg)s j€{L....M). @) '9. & Allemative s

The generator matrbG is square, non-singular and At this point it is worth mentioning that also map-
of dimensionQM. lIts entries are< {0,1}. Additions  pings for a single-antenna transmittevl € 1) can be
and multiplications in (6) have to be performed in described by a reference mappingy(.) and an MdM
Galois Field GF(2). With (5) and (6) an MdM can table. With properly defininegiq(.), the generator
be constructed by applying conventional symbol-wise matrix notation can be used as well. As an example,
mapping uzq(.) to the coded bits. For the example it can easily be verified that QPSK anti-Gray mapping

from Table | we conclude corresponds to block encoding wiBy in (8), followed
1 1 by Gray mapping.
G=Gz= (1 0)- 8 Finally, we introduce a short-hand notation that will

simplify the description of the generator matric8s
Let 1 be a column vector of dimensioQM, with all
entries 1, and le§ be thei-th inverted unit column

For higher dimensions@M > 2), it is not always
possible to describe any MdM by (6). However, all

optimized MdMs presented in Section 4 allow this ector of dimensiorQM, i.e., a vector, with all entries
description. In Table I, the coded bitsare also listed. 4 except the-th position, where there is a 0. The®,

u2d(.) can now be regarded as a two-_dimensional in (8) can be written a&; = (1 &).
reference mapping. ) = 1, we use the previous BPSK

definition, if Q = 2, we defineuxq(.) as the quadrature

phase shift keying (QPSK) Gray mapping an@i=4, 4 Design Criteria and MdM Opti-

we will make use of two dierent reference mappings mization

shown in Fig. 3. One is 16-QAM (quadrature amplitude

modulation) Gray mappingiqd(.). If we swap four  Optimization of MdMs can be considered for two

symbols as indicated by the arrows in Fig. 3, we obtain applications. First, if the receiver does not perform

a modified mappings,(.), which is per definition not iterative decoding, i.e., the demapper does not use a

a Gray mapping anymorex = 2/s- Es to obtain mean  priori knowledge, it is well known that the optimum

symbol powerEs. Note that with our notation the MdM is symbol-wise Gray mapping. The generator

leftmost bit corresponds to the least significant bit. matrix G then is the identity matrix and the mapping
Fig. 4 depicts an alternative scheme to Fig. 1 for functionsuyq(.) as defined in the previous section are

MdM using egs. (5)-(7). Multiplication of the input used. Note that an identity matrix is a non-singular

bits x with G corresponds to linear block encoding matrix with maximum number of O entries.



Turbo — Coding — 2006 - April, 3-7, 2006, Munich

Secondly, a receiver, which iterates over demapperif all dy; = QM. Since this is not allowed for one-to-
and decoder, can utilize a priori information at the one correspondence betweerandc (all entries ofG
demapper. We focus on the case of perfect a pri-would be 1, thuss would be singular), we decrease as
ori information. This means that the outer decoder manydy; as necessary to allow for unique encoding.
provides perfect knowledge about all bits except  This would be the case, if all but one inversions of
the bit xc under consideration in (3). Utilizing this one bit of each of the@" input vectorsx would yield
knowledge most ficiently corresponds to maximizing dyj = QM -1 and one inversion, e.g., of the first bit,
mutual informationlgi(laz = 1) in the EXIT chart. would yielddy j = QM. This can be achieved by a linear
The higherlgi(la1 = 1), the closer the intersection of block code with generator matrix defined in (10).
the transfer characteristics belonging to demapper and Hence, we have @ times dy; = QM and
decoder comes to the desired upper right corner of the2@™.(QM —-1) times dy; = QM —1. The harmonic
EXIT chart and thus the lower is the error floor. Another mean of these values equa®N)?/(QM + 1). Mul-
approach to minimize error floor is to minimize PEP tiplication with o yields (11). u
for perfect a priori knowledge at the demapper. It was From the symmetry in (11) with respect @ and M,
shown in [9] that for Rayleigh fading and high SNR e can conclude that the error floor of an MdM with
this PEP is monotonically decreasing with the harmonic transmit antennas and QPSK is the same as of an MdM
mean Dy of squared Euclidean distances of symbol with 2M transmit antennas and BPSK, if the MdMs

vectors difering in one bit: are designed according to Theorem 1 and the number
of receive antennas is held constant. Note g in
10) is a non-singular matrix with maximum number
Dh = X X+ 9 ( ! :
QM- ZQMZZ”#( )-utcren)]” ®) of 1 entries. Permutations of rows or columns do not

xeX n=1

change the property of this block code.
The first summation is with respect to alR'% per- g property !

mutations X of x. Addition of nth unit row vector 42 MdM with 16-QAM
e corresponds to inversion of theh bit. An optimal
MdM for iterative detection should have maximuba. For 16-QAM Gray mappingizq(.) the shortest squared
. Euclidean distancey = 2/5- E5, between two distinct
4.1 MdM with BPSK and QPSK symbol vectors can be seen in Fig. 3. However, it is

The following Theorem states optimality for MdMs Not possible anymore to state that codewordgedng
with BPSK and QPSK for the case of perfect a priori in | bits are mapped to symbol vectors with squared

knowledge. Euclidean distance- a. Therefore, Theorem 1 can not
Theorem 1: For BPSK and QPSK, i.eQ € {1,2}, be applied straightforward.
and arbitrary number of transmit antenniss Dy, is __We first considerM = 1. Using a generator matrix
maximized, if a generator matrix of the form G4 = (1 1 €3 &) similar to (10), followed by Gray
o mappinguzq(.), we find a 16-QAM anti-Gray mapping
Gom =(1€2 & ... &m) (10)  with Dy = 1063- &R, which is already close to opti-

is applied, followed by two-dimensional mapping Mum. The following squared Euclidean distances occur:
u2d(), as definied in the previous section. The maxi- 32 times &, 16 times & and 16 times 13. Only if,
mum harmonic mean is in addition, four symbols are swapped, as indicated by
2 2 the arrows in Fig. 3, or in other words, if we appB
4Es QM) @ 4Bp-Re (QM)” 11y followed by the modified mapping,(), we obtain
Q QM+1 N QM +1 the best 16-QAM anti-Gray mapping for an AWGN
Proof: Define the shortest squared Euclidean channel, found by numerical methods in [5]. We denote
distance between two distinct symbol vectorsrasee  this mapping as 16-QAM 2d AG. As a consequence
also Fig. 3). ForQ = 1, a = 4E;, while for Q = 2, of this symbol swapping, half of the symbol pairs,
a = 2Es, thusa = 4E5/Q. Since each bit of codeword which first had squared Euclidean distances @in@w
¢ is mapped to an independent dimension, it follows have 1@. Computing Dy for this case yields about
that two codewords with a Hamming distancel ddits 10.86- Eb R which is lower tharDp may, if BPSK with
are mapped to symbol vectors with squared EuclideanM = 4 or QPSK withM = 2, respectlveR)C/ is applied.
distancel - a. It is therefore sfficient to maximize the  From (11) we comput®pmax = 12.8- . All three
harmonic mean of Hamming distances of codewordsschemes transmit-&; information bits per channel use.
pairs ¢, belonging to input vectorg, which difer in It was shown in [5] that the 16-QAM 2d AG mapping
one bit. Define these Hamming distancesdag,i € performs over a Rayleigh channel almost identically as
.,QM-2°M} For the moment, we neglect the facts the mapping optimized for Razcelgh fading, which has
that codewords have to be distinct and thatdhe have a slightly higherDy = 10.88-
to be discrete-valued. We only restrif; to be positive For M =2, we applied aII possible 8-dimensional
and upper bounded b@M. Obviously, the harmonic  non-singular matrices, where all except seven en-
mean is aJ-convex function of thely; and is maximal  tries are 1, followed by eithemuag(.) or u5y(.).

Dh,max
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The highest value foD, was obtained withGg = For comparison, BER for symbol-wise mappings for

(&1 1 & & & & & &) in combination withu, () and 4x 4 BPSK and %2 QPSK with anti-Gray (AG)
is about 2513 &%, which is again smaller than for mapping is shown. No turbo dlican be observed in
BPSK or QPSK at the same information rate: for the considered SNR interval.

Q=2 andM = 4, we getDpmax~ 2844- 2% This

suboptimality of higher-order modulatiorQ(> 2) is 1 ‘

due to the fact that the numb&M of bits which are iR ane U TSRy e e
mapped to a symbol vectsy is larger than the number & Lo By
of independent dimensions a&f which is M for real 0.01F

valued and ®1 for complex valued symbols;.

Extensive investigation on MdM optimization with — « 0.001¢
the binary switching algorithm [11] was done in [12], 2 0001k
but no result could be found, which has a lardy | 4x2,
than MdM designed with the proposed matrices. 1e-05 353
Theorem 2; The harmonic meamy, in (9) is con- 16_06;%1 %
stant with respect to the number of transmit antennas &iﬁ; BPS ’f'ﬁ"d
M, if conventional symbol-wise mapping is applied. 1e-07.2X2QPSK, 2dAG; >, ,

1 15 2 25 3 35 4 4.5 5

Proof: Compared with a single-antenna transmit- E/Ny / [0B]

ter, the frequencies of occurrence of squared Euclidean
distances in (9) areM times higher, if M transmit Fig. 5: BER for MdM (—) and conventional symbol-wise
antennas and symbol-wise mapping are applied. This mappings (...) for various numbers of tx and rx antennas
up-scaling does not change the harmonic mean.m and modulation orders, 2|gHz, R; =12, 20 it.

Hence, if we apply symbol-wise 16-QAM 2d AG for

_ S Ep-Re If we use the previous =4 BPSK and theM =2
M =2, we have again just 186- 7€ P

QPSK MdM in a scenario, where the receiver employs

only N =1 antenna, we can see from Fig. 6, that their

5 Simulation Results performance is superior to a conventiona 1 system
with 16-QAM 2d AG mapping. Note that MdM utilizes

We have simulated BER as a function of SNR with multiple transmit antennas for spatial multiplexing as

10" information bits per SNR value. We use a non- opposed to space-time block or trellis codes, where ad-

recursive systematic convolutional code with memory ditional redundancy is distributed over these antennas.

2, code rateR. = 1/2 and generator polynomials (04,07)

given in octal numbers, which provides a good match

to the demapper in the EXIT-chart, as will be seen 1

later. Interleaving depth, which equals the codeword

size, isS =96000. This is rather large in order to factor

out dTects of short interleaver depths. In all cases we 0.1

have applied the MdM that provides maximubg, as

explained in Section 4, except in some cases, where 4

conventional symbol-wise mapping is applied, which & 0.01¢
is indicated by the notation "2d” in the figures.

Fig. 5 shows BER after 20 iterations (it.) for sys- 0,001k
tems with an information rate of 2tHz. As can T

F AxT, BPSK, MdM ——

be concluded from Theorem 1, the error floors of [ 2x1, QPSK, MdM—o— :
the 4x2 BPSK and the 22 QPSK system are the 0.0001 LEXL.16-QAM ‘ ‘
same. Both schemes transmit bits over 4 independent 3 3.5 4 4.5 5 5.5

dimensions: 4 spatial dimensions, provided by the i.i.d. Ee/No  [dB]

channel coficients, for BPSK and 2 spatial dimensions  Fig. 6: BER for MdM (—) and conventional symbol-wise
subdivided into 2 orthogonal dimensions of the com- mapping (...)N =1 rx antenna, 2 biyHz, Re =1/2, 20 it.
plex plane in case of QPSK. This orthogonality among

each of the two dimensions provides an advantage for In Fig. 7 BER after 40 iterations for systems with
low SNR, visible in an earlier turbo ¢fi for 2x 2 information rate 4 bj/Hz is depicted. With MdMs no
QPSK. 4x4 BPSK has an additional receive diversity errors could be measured after the turbafcliThe
advantange. BER for 16-QAM 2d AG witN =1,2,4 suboptimality of higher-order modulation discussed in
receive antennas, respectively, is also depicted. FoiSection 4 can clearly be seen. 16-QAM 2d AG with
N = 2 the error floor is higher than that of the two symbol-wise mapping antM = N = 2 is about 3.5dB
MdMs in Fig. 5 employing the same number of receive worse than the #4 QPSK MdM. Note that from SNR
antennas, becaudey, is smaller as already discussed. definition (2) an additional 3dB array gain has to be
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considered for the 44 scheme. BER for theX2 16-

QAM 2d AG system, which transmits only 2 l§tHz, is
also shown. As implied in the discussion of Theorem 2,
the error floor is independent of the number of transmit
antennasM for symbol-wise mappings. ThéM = 4
QPSK MdM utilizes 8 independent dimensions, while
the 16-QAM MdM for M = 2 only provides 4. Hence,
the turbo clif of 4x4 QPSK MdM occurs earlier.

The optimized 4« 4 QPSK MdM with outerR; =
1/2 code in Fig. 7 comes very close to the capacity
limit. The turbo clif is at 2dB, which is only 0.4dB
away from capacity. In [6], 44 QPSK was combined
with an outer turbo-code of raté; = 1/2 and a turbo
cliff at slightly less than 3 dB without measurable error
floor was achieved. In [3], a configuration similar to [6]
resulted in a turbo dff at 2.2 dB.

———————— gy achieve the same PEP. Simulation results have shown
o1t ' AN 1 that MdMs with the same PEP exhibit the same error
ooll ' ] floor. Our 4x4 QPSK MdM allows transmission with-
& out measurable error-floor only 0.4dB away from the
< . . .
« 0001 ¥ 1 capacity limit.
@ E
00001} 3 Vo
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