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Abstract

We present multidimensional mapping (MdM) as a generalizedway how to assign input bits to symbol vectors for
spatial multiplexing multiple-input, multiple-output (MIMO) transmission with iterative detection. Design goal is
to minimize bit error floor by means of EXIT chart and pairwiseerror probability under the assumption of perfect
a priori knowledge at the demapper. We propose an effective description of MdM based on block code generator
matrices. The presented MdMs achieve minimal error floor andturbo cliff positions close to capacity limit.

1 Introduction

Utilization of multiple antennas at both transmitter and
receiver allows high data rates as well as reliable com-
munication. Multiple-input, multiple-output (MIMO)
systems are therefore still a field of intensive research.
In [1] the potential for enormous capacity gains was
first adressed. High data rates can be achieved by spatial
multiplexing, e.g. with the V-BLAST architecture [2].

As in most disciplines, a tradeoff between complexity
and performance of a system has to be made. Ap-
proaching capacity inherently demands more sophisti-
cated transmitter and to an even greater extend receiver
schemes. One way to improve performance is iterative
MIMO detection, often referred to as bit-interleaved
coded modulation with iterative detection (BICM-ID)
for MIMO. Unless the outer code is of low rate these
schemes typically suffer from a serious error floor. De-
creasing the error floor can be achieved by code doping,
where a rate 1 inner recursive encoder is applied [3],
[4]. As a drawback, an additional maximum a posteriori
(MAP) decoder is required at the receiver. Alternatively,
mappings optimized for BICM-ID can be used [5].
As opposed to Gray mapping, symbols differing in
one bit should have a large Euclidean distance. This
is justified by the availability of a priori information.
No additional overhead is required and error floor is
slightly decreased. Another way to decrease bit error
rate (BER) is to employ an optimal (vector-wise) MAP
demapper. For most MIMO scenarios this would be
prohibitively complex, but close-to-optimum sphere de-
coding algorithms exist with lower complexity, e.g. [6],
[7].

In this paper we examine the conjunction of op-
timized mappings with iterative MAP demapping for
improved MIMO transmission. Multidimensional map-
ping (MdM) was proposed in [3] and brute-force search
optimization was performed. We derive an effective

description of MdMs based on block code generator
matrices. Using EXIT chart [8] and bounds on pairwise
error probability (PEP) for BICM [9], we propose op-
timized MdMs for several configurations, which allow
for transmission with minimal error floor and turbo cliff
positions close to capacity limit.

In Section 2 we describe the BICM spatial multi-
plexing transmitter, the channel model and the iterative
receiver. Section 3 outlines MdMs and encoding using
generator matrices. Design critria are derived in Sec-
tion 4 and optimized MdMs are presented, which are
verified by simulations results in Section 5, followed
by the conclusion in Section 6.

2 System Model

2.1 Transmitter
The transmitter in Fig. 1 consists of a bit source with
output sequenceu. These information bits are first
convolutionally encoded by an outer encoder of rate
Rc, then randomly bit-interleaved with an interleav-
ing depth S . Input to the MdM is row vectorx =
(x1, . . . , xQM) comprising QM bits. M is the number
of transmit (tx) antennas andQ is the number of
bits per complex symbol. The symbol column vector
s = (s1, . . . , sM)T is transmitted, where each complex
symbol s j, j ∈ {1, . . . ,M}, has mean powerEs. (.)T de-
notes transposition. An MdM is defined by the relation
s= µ(x), with µ(.) being the multidimensional mapping
function, and is examined more closely in Section 3.
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Fig. 1: MIMO transmitter with multidimensional mapper
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2.2 Channel model

We use the widely accepted frequency flat fading
MIMO equivalent baseband model, described by

r = Hs+n . (1)

r = (r1, . . . ,rN)T is the received symbol column vector,
whereri is the component for antennai, i ∈ {1, . . . ,N},
and N is the number of receive (rx) antennas. The
channel matrix is given byH = (h1 . . .hM), with h j =(
h1, j, . . . ,hN, j

)T
. The impulse responsehi, j from trans-

mitter j to receiveri is modelled as a zero-mean, com-

plex Gaussian random variable satisfyingE
{∣∣∣hi, j

∣∣∣2
}
= 1

(i.e., the channel is passive). All entries ofH are i.i.d.,
change with each channel use and are assumed to be
perfectly known at the receiver.n = (n1, . . . ,nN)T is an
additive noise column vector with componentsni at
receive antennai, which are complex AWGN, each
with zero-mean and varianceσ2

n. This means that real
and imaginary part ofni are Gaussian with variance
σ2

n/2 = N0/2 each. We considern to be uncorrelated,
i.e., E

{
nnH

}
=σ2

nIN . IN is the identity matrix of sizeN
and (.)H denotes conjugate transposition. We define the
signal-to-noise ratio (SNR) as

SNR=
Eb

N0
=

M ·Es ·N
Rc ·M ·Q ·N0

=
Es ·N

Rc ·Q ·σ2
n
, (2)

whereEb is the transmitted energy per information bit
at the receiver andN0 the noise power spectral density.
Note that (2) is the SNR at the total receiver and not
at one receiver antenna element.

2.3 Receiver

The iterative receiver is depicted in Fig. 2.
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Fig. 2: Receiver structure for iterative detection

The vector-wise MAP demapper computes for each
bit xk ,k ∈ {1, . . . ,QM}, a posterioriL-valuesLD,1 (xk |r )+
D1 out of channel observationr and a prioriL-values
LA,1 =

(
LA,1 (x1) , . . . ,LA,1

(
xQM

))T, fed back from the
outer MAP decoder. Subtraction ofLA,1 (xk)+A1 yields

extrinsic L-value LE,1 (xk , r )+E1 as [10]:

LE,1 (xk , r ) = ln

∑
x̂∈�k,1

p (r |µ(x̂)) ·exp
(
x̂[k] ·LA,1[k]

)

∑
x̂∈�k,0

p (r |µ(x̂)) ·exp
(
x̂[k] ·LA,1[k]

) , (3)

where�k,b is the set of all row vectorŝx for which
x̂k = b,b ∈ {0,1}, andx̂[k] ·LA,1[k] is the scalar product of
both vectors without thekth element.A1, D1 andE1 are
shorthand notations. OtherL-values occuring in Fig. 2
are defined similarly. The probability density functions
p (r |µ(x̂)) are multidimensional Gauss-functions:

p (r |µ(x̂)) =
1

(πN0)M
exp

(
−‖r −Hµ(x̂)‖2

N0

)
. (4)

After deinterleaving,E1 is used as a priori information
A2 for the MAP decoder, which outputs a posterioriL-
valuesD2 of coded bits. In the first pass through the
demapper the a prioriL-valuesA1 are set to zero, while
in the following iterationsE2 = D2−A2 are interleaved
and the resulting a priori informationA1 is fed back.
After a certain number of iterations, a hard decision
on the a posterioriL-valuesD′2 of the information bits
yields the estimateŝu on the transmitted data.

To reduce complexity of computation of (3), which is
exponential withQM, it would be reasonable to apply
suboptimal sphere decoding for practical implementa-
tions [7]. In this paper we use optimal MAP demapping
to obtain lower bounds on BER.

3 Multidimensional Mappings

3.1 Principle
We first consider conventional symbol-wise mapping,
which is applied, e.g., in the V-BLAST architecture
[2]. We write the input vector asx = (x1, . . . ,xM),
with x j = (x j1, . . . , x jQ), j ∈ {1, . . . ,M}. For a given signal
constellation, the complex symbols j, transmitted over
antennaj, is determined byQ bits in vectorx j only.
Real and imaginary part ofs j are obtained by a two-
dimensional (2d) mapping, denoted ass j = µ2d(x j).
We can thus write the transmit vector ass= µ(x) =
(µ2d(x1), . . . ,µ2d(xM))T. A linear detector applies zero
forcing (ZF) or minimum mean squared error (MMSE)
equalization, followed by symbol-wise MAP demap-
ping. Vector-wise MAP demapping is also applicable
and is known to be the optimal detection scheme.

For the following example we defineµ2d(.) to be a bi-
nary phase shift keying (BPSK) mapping function (Q=
1), i.e., µ2d(0) = −

√
Es and µ2d(1) = +

√
Es. Although

BPSK is a one-dimensional mapping, we maintain the
notation µ2d(.). An MdM generalizes a mapping by
allowing for any one-to-one correspondence from bit
vectorx to symbol vectors= µ(x). However, we restrict
ourselves to the case, where all symbolss j are drawn
from the same modulation alphabet. Table I shows an
MdM for M = 2 transmit antennas and BPSK symbols.
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TABLE I: Example for MdM: M = 2
transmit antennas and BPSK,Q = 1

x1 x2 s1 s2 c1 c2

0 0 −
√

Es −
√

Es 0 0
1 0 +

√
Es +

√
Es 1 1

0 1 +
√

Es −
√

Es 1 0
1 1 −

√
Es +

√
Es 0 1

The multidimensional mapper uses the look-up table
to allocateQM input bits to a transmit symbol vector
s, e.g.,µ ((1,0)) = (+

√
Es,+

√
Es)T. Thus, linear ZF or

MMSE detection is not possible anymore. The look-
up table consists of 2QM rows. For smallQ and M,
the table is manageable. However, for largerQ and M,
its size gets very large, e.g., forQ = 2 and M = 4, we
would have 256 rows. We thus derive an alternative
description of MdM in the following subsection. Note
that optimization of MdMs by brute-force search is
literally intractable, since there exist (2QM)! different
possibilities to define the look-up table. WithQ= 2 and
M = 4, there are about 10505 different look-up tables.

3.2 MdM generation
In many cases, an MdM can be described by

s= µ(x) = (µ2d(c1), . . . ,µ2d(cM))T, (5)

c= (c1, . . . ,cM) = x ·G (6)

cj = (c j1, . . . ,c jQ), j ∈ {1, . . . ,M}. (7)

The generator matrixG is square, non-singular and
of dimension QM. Its entries are∈ {0,1}. Additions
and multiplications in (6) have to be performed in
Galois Field GF(2). With (5) and (6) an MdM can
be constructed by applying conventional symbol-wise
mappingµ2d(.) to the coded bitsc. For the example
from Table I we conclude

G =G2 =

(
1 1
1 0

)
. (8)

For higher dimensions (QM > 2), it is not always
possible to describe any MdM by (6). However, all
optimized MdMs presented in Section 4 allow this
description. In Table I, the coded bitsc are also listed.
µ2d(.) can now be regarded as a two-dimensional

reference mapping. IfQ= 1, we use the previous BPSK
definition, if Q = 2, we defineµ2d(.) as the quadrature
phase shift keying (QPSK) Gray mapping and ifQ = 4,
we will make use of two different reference mappings
shown in Fig. 3. One is 16-QAM (quadrature amplitude
modulation) Gray mappingµ2d(.). If we swap four
symbols as indicated by the arrows in Fig. 3, we obtain
a modified mappingµ′2d(.), which is per definition not
a Gray mapping anymore.α = 2/5 · Es to obtain mean
symbol power Es. Note that with our notation the
leftmost bit corresponds to the least significant bit.

Fig. 4 depicts an alternative scheme to Fig. 1 for
MdM using eqs. (5)-(7). Multiplication of the input
bits x with G corresponds to linear block encoding
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Fig. 3: Reference mappings for 16-QAM: Grayµ2d(.) and
modified mappingµ′2d(.) (with changes in brackets)

with code rate 1. The encoded bitsc are input to a
conventional V-BLAST transmitter, whereQ bits are
assigned to complex, i.e., two-dimensional symbols,
which are then serial-to-parallel converted before trans-
mission over the antennas.

-x block-
encoder
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-c mapper
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-sT
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#1s1
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Fig. 4: Alternative scheme for MdM

At this point it is worth mentioning that also map-
pings for a single-antenna transmitter (M = 1) can be
described by a reference mappingµ2d(.) and an MdM
table. With properly defininedµ2d(.), the generator
matrix notation can be used as well. As an example,
it can easily be verified that QPSK anti-Gray mapping
corresponds to block encoding withG2 in (8), followed
by Gray mapping.

Finally, we introduce a short-hand notation that will
simplify the description of the generator matricesG.
Let 1 be a column vector of dimensionQM, with all
entries 1, and letei be the i-th inverted unit column
vector of dimensionQM, i.e., a vector, with all entries
1, except thei-th position, where there is a 0. Then,G2

in (8) can be written asG2 = (1 e2).

4 Design Criteria and MdM Opti-
mization

Optimization of MdMs can be considered for two
applications. First, if the receiver does not perform
iterative decoding, i.e., the demapper does not use a
priori knowledge, it is well known that the optimum
MdM is symbol-wise Gray mapping. The generator
matrix G then is the identity matrix and the mapping
functionsµ2d(.) as defined in the previous section are
used. Note that an identity matrix is a non-singular
matrix with maximum number of 0 entries.
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Secondly, a receiver, which iterates over demapper
and decoder, can utilize a priori information at the
demapper. We focus on the case of perfect a pri-
ori information. This means that the outer decoder
provides perfect knowledge about all bitsx except
the bit xk under consideration in (3). Utilizing this
knowledge most efficiently corresponds to maximizing
mutual information IE1(IA1 = 1) in the EXIT chart.
The higherIE1(IA1 = 1), the closer the intersection of
the transfer characteristics belonging to demapper and
decoder comes to the desired upper right corner of the
EXIT chart and thus the lower is the error floor. Another
approach to minimize error floor is to minimize PEP
for perfect a priori knowledge at the demapper. It was
shown in [9] that for Rayleigh fading and high SNR
this PEP is monotonically decreasing with the harmonic
mean Dh of squared Euclidean distances of symbol
vectors differing in one bit:

Dh =


1

QM ·2QM

∑

x∈�

QM∑

n=1

∥∥∥µ(x)−µ(x+eT
n )

∥∥∥−2



−1

. (9)

The first summation is with respect to all 2QM per-
mutations� of x. Addition of nth unit row vector
eT

n corresponds to inversion of thenth bit. An optimal
MdM for iterative detection should have maximumDh.

4.1 MdM with BPSK and QPSK
The following Theorem states optimality for MdMs
with BPSK and QPSK for the case of perfect a priori
knowledge.

Theorem 1: For BPSK and QPSK, i.e.,Q ∈ {1,2},
and arbitrary number of transmit antennasM, Dh is
maximized, if a generator matrix of the form

GQM = (1 e2 e3 . . . eQM) (10)

is applied, followed by two-dimensional mapping
µ2d(.), as definied in the previous section. The maxi-
mum harmonic mean is

Dh,max=
4Es

Q
·

(QM)2

QM+1
(2)
=

4Eb ·Rc

N
·

(QM)2

QM+1
. (11)

Proof: Define the shortest squared Euclidean
distance between two distinct symbol vectors asα (see
also Fig. 3). ForQ = 1, α = 4Es, while for Q = 2,
α = 2Es, thusα = 4Es/Q. Since each bit of codeword
c is mapped to an independent dimension, it follows
that two codewords with a Hamming distance ofl bits
are mapped to symbol vectors with squared Euclidean
distancel ·α. It is therefore sufficient to maximize the
harmonic mean of Hamming distances of codewords
pairs c, belonging to input vectorsx, which differ in
one bit. Define these Hamming distances asdH,i, i ∈
{1, . . . ,QM ·2QM}. For the moment, we neglect the facts
that codewords have to be distinct and that thedH,i have
to be discrete-valued. We only restrictdH,i to be positive
and upper bounded byQM. Obviously, the harmonic
mean is a∪-convex function of thedH,i and is maximal

if all dH,i = QM. Since this is not allowed for one-to-
one correspondence betweenx and c (all entries ofG
would be 1, thusG would be singular), we decrease as
many dH,i as necessary to allow for unique encoding.
This would be the case, if all but one inversions of
one bit of each of the 2QM input vectorsx would yield
dH,i = QM −1 and one inversion, e.g., of the first bit,
would yielddH,i =QM. This can be achieved by a linear
block code with generator matrix defined in (10).

Hence, we have 2QM times dH,i = QM and
2QM · (QM−1) times dH,i = QM − 1. The harmonic
mean of these values equals (QM)2/(QM + 1). Mul-
tiplication with α yields (11).
From the symmetry in (11) with respect toQ and M,
we can conclude that the error floor of an MdM withM
transmit antennas and QPSK is the same as of an MdM
with 2M transmit antennas and BPSK, if the MdMs
are designed according to Theorem 1 and the number
of receive antennas is held constant. Note thatGQM in
(10) is a non-singular matrix with maximum number
of 1 entries. Permutations of rows or columns do not
change the property of this block code.

4.2 MdM with 16-QAM

For 16-QAM Gray mappingµ2d(.) the shortest squared
Euclidean distance,α = 2/5 · Es, between two distinct
symbol vectors can be seen in Fig. 3. However, it is
not possible anymore to state that codewords differing
in l bits are mapped to symbol vectors with squared
Euclidean distancel ·α. Therefore, Theorem 1 can not
be applied straightforward.

We first considerM = 1. Using a generator matrix
G̃4 =

(
e1 1 e3 e4

)
similar to (10), followed by Gray

mappingµ2d(.), we find a 16-QAM anti-Gray mapping
with Dh = 10.63· Eb·Rc

N , which is already close to opti-
mum. The following squared Euclidean distances occur:
32 times 5α, 16 times 8α and 16 times 13α. Only if,
in addition, four symbols are swapped, as indicated by
the arrows in Fig. 3, or in other words, if we applỹG4

followed by the modified mappingµ′2d(.), we obtain
the best 16-QAM anti-Gray mapping for an AWGN
channel, found by numerical methods in [5]. We denote
this mapping as 16-QAM 2d AG. As a consequence
of this symbol swapping, half of the symbol pairs,
which first had squared Euclidean distances of 8α now
have 10α. Computing Dh for this case yields about
10.86· Eb·Rc

N , which is lower thanDh,max, if BPSK with
M = 4 or QPSK with M = 2, respectively, is applied.
From (11) we computeDh,max= 12.8 · Eb·Rc

N . All three
schemes transmit 4·Rc information bits per channel use.
It was shown in [5] that the 16-QAM 2d AG mapping
performs over a Rayleigh channel almost identically as
the mapping optimized for Rayleigh fading, which has
a slightly higherDh = 10.88· Eb·Rc

N .
For M = 2, we applied all possible 8-dimensional

non-singular matrices, where all except seven en-
tries are 1, followed by eitherµ2d(.) or µ′2d(.).
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The highest value forDh was obtained withG̃8 =(
e1 1 e3 e4 e5 e6 e7 e8

)
in combination withµ′2d(.) and

is about 25.13· Eb·Rc
N , which is again smaller than for

BPSK or QPSK at the same information rate: for
Q = 2 and M = 4, we getDh,max ≈ 28.44· Eb·Rc

N . This
suboptimality of higher-order modulation (Q > 2) is
due to the fact that the numberQM of bits which are
mapped to a symbol vectors, is larger than the number
of independent dimensions ofs, which is M for real
valued and 2M for complex valued symbolss j.

Extensive investigation on MdM optimization with
the binary switching algorithm [11] was done in [12],
but no result could be found, which has a largerDh

than MdM designed with the proposed matrices.
Theorem 2: The harmonic meanDh in (9) is con-

stant with respect to the number of transmit antennas
M, if conventional symbol-wise mapping is applied.

Proof: Compared with a single-antenna transmit-
ter, the frequencies of occurrence of squared Euclidean
distances in (9) areM times higher, if M transmit
antennas and symbol-wise mapping are applied. This
up-scaling does not change the harmonic mean.

Hence, if we apply symbol-wise 16-QAM 2d AG for
M = 2, we have again just 10.86· Eb·Rc

N .

5 Simulation Results
We have simulated BER as a function of SNR with
107 information bits per SNR value. We use a non-
recursive systematic convolutional code with memory
2, code rateRc = 1/2 and generator polynomials (04,07)
given in octal numbers, which provides a good match
to the demapper in the EXIT-chart, as will be seen
later. Interleaving depth, which equals the codeword
size, isS = 96000. This is rather large in order to factor
out effects of short interleaver depths. In all cases we
have applied the MdM that provides maximumDh, as
explained in Section 4, except in some cases, where
conventional symbol-wise mapping is applied, which
is indicated by the notation ”2d” in the figures.

Fig. 5 shows BER after 20 iterations (it.) for sys-
tems with an information rate of 2 bit/s/Hz. As can
be concluded from Theorem 1, the error floors of
the 4× 2 BPSK and the 2× 2 QPSK system are the
same. Both schemes transmit bits over 4 independent
dimensions: 4 spatial dimensions, provided by the i.i.d.
channel coefficients, for BPSK and 2 spatial dimensions
subdivided into 2 orthogonal dimensions of the com-
plex plane in case of QPSK. This orthogonality among
each of the two dimensions provides an advantage for
low SNR, visible in an earlier turbo cliff for 2× 2
QPSK. 4×4 BPSK has an additional receive diversity
advantange. BER for 16-QAM 2d AG withN = 1,2,4
receive antennas, respectively, is also depicted. For
N = 2 the error floor is higher than that of the two
MdMs in Fig. 5 employing the same number of receive
antennas, becauseDh is smaller as already discussed.

For comparison, BER for symbol-wise mappings for
4× 4 BPSK and 2× 2 QPSK with anti-Gray (AG)
mapping is shown. No turbo cliff can be observed in
the considered SNR interval.
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4x4, BPSK, 2d
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Fig. 5: BER for MdM (—) and conventional symbol-wise
mappings (. . . ) for various numbers of tx and rx antennas

and modulation orders, 2 bit/s/Hz, Rc = 1/2, 20 it.

If we use the previousM = 4 BPSK and theM = 2
QPSK MdM in a scenario, where the receiver employs
only N = 1 antenna, we can see from Fig. 6, that their
performance is superior to a conventional 1×1 system
with 16-QAM 2d AG mapping. Note that MdM utilizes
multiple transmit antennas for spatial multiplexing as
opposed to space-time block or trellis codes, where ad-
ditional redundancy is distributed over these antennas.

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.5  4  4.5  5  5.5

B
E
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Eb/N0 / [dB]

4x1, BPSK, MdM
2x1, QPSK, MdM
1x1, 16−QAM

Fig. 6: BER for MdM (—) and conventional symbol-wise
mapping (. . . ),N = 1 rx antenna, 2 bit/s/Hz, Rc = 1/2, 20 it.

In Fig. 7 BER after 40 iterations for systems with
information rate 4 bit/s/Hz is depicted. With MdMs no
errors could be measured after the turbo cliff. The
suboptimality of higher-order modulation discussed in
Section 4 can clearly be seen. 16-QAM 2d AG with
symbol-wise mapping andM = N = 2 is about 3.5 dB
worse than the 4×4 QPSK MdM. Note that from SNR
definition (2) an additional 3 dB array gain has to be

Turbo – Coding – 2006    ·    April, 3–7, 2006, Munich



considered for the 4×4 scheme. BER for the 1×2 16-
QAM 2d AG system, which transmits only 2 bit/s/Hz, is
also shown. As implied in the discussion of Theorem 2,
the error floor is independent of the number of transmit
antennasM for symbol-wise mappings. TheM = 4
QPSK MdM utilizes 8 independent dimensions, while
the 16-QAM MdM for M = 2 only provides 4. Hence,
the turbo cliff of 4×4 QPSK MdM occurs earlier.

The optimized 4× 4 QPSK MdM with outerRc =
1/2 code in Fig. 7 comes very close to the capacity
limit. The turbo cliff is at 2 dB, which is only 0.4 dB
away from capacity. In [6], 4×4 QPSK was combined
with an outer turbo-code of rateRc = 1/2 and a turbo
cliff at slightly less than 3 dB without measurable error
floor was achieved. In [3], a configuration similar to [6]
resulted in a turbo cliff at 2.2 dB.
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Fig. 7: BER for MdM (—) and conventional symbol-wise
mappings (. . . ), 4 bit/s/Hz, Rc = 1/2 and 1×2 16-QAM with

2 bit/s/Hz, Rc = 1/2, 40 it.

Another advantage of QPSK over 16-QAM MdM
becomes visible in the EXIT-chart of Fig. 8. The
IE1(IA1) curve of 4×4 QPSK MdM has an inflection
point at aboutIA1 = 0.5, which allows a good match
to the transfer charactristic of the decoder, resulting
in an early turbo cliff. As a drawback, matching of
transfer charactristics results in many iterations. A
tunnel between both curves is already open at 2 dB. An
inflection point of IE1(IA1) could not be observed for
any 16-QAM MdM. Moreover,IE1(IA1 = 1) is smaller
in case of the 16-QAM MdM. Symbol-wise anti-Gray
QPSK with M = N = 4 is also shown.

6 Conclusion

In this paper we have presented a method to design
MdM by means of generator matrices. This allows
optimization with respect to minimum PEP for perfect
a priori knowledge at the demapper. For BPSK and
QPSK, we proposed optimal generator matrices. QPSK
MdMs have an earlier turbo cliff than BPSK MdMs
and need just half the number of transmit antennas to
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Fig. 8: EXIT-chart at 2 dB, MdM (—) and conventional
symbol-wise mapping (. . . ), 4 bit/s/Hz, Rc = 1/2

achieve the same PEP. Simulation results have shown
that MdMs with the same PEP exhibit the same error
floor. Our 4×4 QPSK MdM allows transmission with-
out measurable error-floor only 0.4 dB away from the
capacity limit.
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