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Abstract—We analyze the performance of switch-and-stay In this paper, we analyze—to the best of our knowledge
transmit diversity systems in presence of an erroneous feedback for the first time—the performance of switch-and-stay transmit
link. First of all, the analysis is conducted for arbitrary fading diversity systems in presence of an erroneous feedback link. In

distributions and a rather general class of performance functions. first st duct th | f Vi
Assuming a certain feedback error probability P., we determine amrst step, we conduct a ratner general performance analysis

the distribution of the signal-to-noise ratio (SNR) at the receiver- DY considering arbitrary fading distributions as well as a broad
side and we provide a generic expression for the optimum class of performance functions, for which we derive generic
switching threshold, which turns out to be independent ofF..  expressions for the average system performance, the optimum
Furthermore, it is shown that the performance degradation due switching threshold and the performance degradation due to

to feedback errors is always a linear function of the feedback feedback errors. In a second ste e consider a svstem with
error rate. Finally, we consider a concrete system as an example ) p, W Yy

and we demonstrate how our generic results can be used to easilymaXimum_ ratio _combining (MRC) at the receiver-side and
investigate the performance of this system in terms of the average Nakagamim fading as a concrete example and we show how

SNR, the system capacity as well as the average bit error rate. the generic results presented before can be used to easily derive
analytical closed-form expressions for the average SNR, the
capacity, and the average BER of this system. Please note that
Switched diversity schemes are known to offer a good tradeven though we focus on switched transmit diversity herein,
off between complexity, hardware costs, and the capabilityir results can readily be applied to switch-and-stay receive
to substantially mitigate the detrimental effects of multipatbombining as well by exploiting the duality between both
fading on the performance of wireless communication systemgproaches in the absence of feedback errors.
[1]-[5]. In case that only one out of several antenna elementsThe remainder of this paper is structured as follows: In Sec-
may be used, it is clearly optimal to select always the antentian 1, we shortly introduce our system model. The statistics
for which the signal-to-noise ratio (SNR) at the receiver-sidef the SNR at the receiver-side are derived in Section |ll,
is maximized, but this requires permanent estimation of thellowed by the generic performance analysis in Section IV.
SNR that could be achieved with any antenna element amdSection V, we consider a concrete system as an example
therefore might significantly increase the complexity compardsfore finally the conclusions are given in Section VI.
to non-diversity schemes [1]. With switched diversity systems,
in contrast, a certain antenna element is generally used as long
as the induced signal quality is acceptable, i.e., as long as th&Ve consider a block-fading MIMO system with two trans-
corresponding SNR exceeds a certain threshold value. If tmét antennas andVix receive antennas as depicted in Fig. 1.
SNR falls below this threshold, different strategies might bEhe basic mode of operation is basically similar to the one
realized, such as to simply switch to the next antenna elemaiready considered in [6]. The transmitter uses always only
(switch-and-stay) or to switch to the next antenna element fone antenna for data transmission while the receiver generally
which the induced SNR is acceptable (switch-and-examinefombines the received signals first of all in an appropriate way
The performance analysis and optimization of switchgdising MRC, equal gain combining, or selection combining,
diversity schemes have attracted a lot of research attention example) before performing the actual data detection. The
during the past decade, see for example [2]-[6], but mos#glection of an appropriate transmit antenna is done based
these schemes have only been applied at the receiver-side. Ujpen feedback information from the receiver. For that purpose,
main difference in case that we perform switched diversity #ie receiver periodically measures the instantaneous &SNR
the transmitter-side is that we usually require an efficient feedt the output of the signal combiner and compares it to a given
back link for that purpose, via which the receiver can signal thiereshold valueyr. If ~er is smaller thanyr, a "1’ is fed back
transmitter when it should switch to another antenna elemeatthe transmitter, indicating that it should switch to the other
since the SNR becomes unacceptable [6]. However, in practam@enna whereas otherwise a '0’ is fed back, indicating that
such a feedback link might induce feedback errors as well as switching is required. Please note that for proper operation
a certain feedback delay, wherefore the performance analybis feedback interval should be in the order of the coherence
of switched diversity reception systems generally cannot kieme of the channel, so that the channel is approximately time-
directly applied to switched transmit diversity schemes as weilhvariant during each interval, what is always assumed in the

I. INTRODUCTION

Il. SYSTEM MODEL



T Besides, whenever we switch to the other antenna element, the

Artenna Sdm’rj 7 distribution of e corresponds to the distribution of the SNR
T Siomal — without transmit diversity since we do not have any additional
«{Of . | combiner Detection information about the SNR induced by that antenna. Therefore,
\_j\ Yry (Yerr we cIearIy_ can say that PrpRy < v|Ei] = F,,(v). If we
: T do not switch even though we are supposedtg,surely is

always smaller than the threshold valye, so that we get

erroneous feedback link Proq’)/eff S ’Y|E2] == m|n{;w0(:;),1} PUtUng eVerything
. 0

together then yields after some rearrangements to (1).m

It can easily be seen that in the error-free caBe = 0), (1)

reduces to the well-known result from [3], [4] whereas in the
following. Besides, the feedback bit might be erroneousiorst casek. = 0.5), we haveF., = F,,(7), i.e., in this case
detected by the transmitter, what is taken into account B¥r system has exactly the same performance as a system with
assuming a certain feedback error probabifity The receiver Only one transmit antenna, what is quite obvious since in this

itself is supposed to have always perfect channel knowleddi@se the feedback bits are totally unreliable and hence useless.
. SNR STATISTICS Corollary 1: The probability density function (pdf) of the

SNR vett is given by
First of all, we determine the distribution of the SNg; as
indicated in Fig. 1. Let us denote the (instantaneous) combined,. () = { Py (V) [p(yr, Pe) +2P), v <Ar 5)
SNR at the receiver-side in case that always the same transmit Pryo(7) [L+plrs Pe)l v Z0r

antenna is used (i.e., for a system without transmit diversityjtn ,(~,, P,) according to (2) ang., (v) = ZF,(7) -

by 7o in the following and the corresponding expected value  pooe |t can easily be seen that,, (7) i 2R ()
by Efo] = 7. For simplicity, we assume that the distribution i 1= () according to (1) e ety
of 7o does not depend on which of the two antenna elementsis " '

active. A generalization of our results to the case of unequal IV. GENERIC PERFORMANCEANALYSIS

SNR diStributionS induced by the two transmit antennas iS Many important measures Characterizing the performance
straightforward, but would significantly complicate notationef communication systems in fading environments, such as
If we denote the cumulative distribution function (cdf) ®f the average symbol error rate (SER), the average bit error
by F,(7), the cdf ofye generally can be expressed in termggte (BER), or the ergodic system capacity, can be determined
of F,,(v), the feedback error probability. as well as the py averaging appropriate performance functions, which reflect
switching thresholdy as given by the following theorem:  the corresponding performance in an additive white Gaussian

Fig. 1. Considered switch-and-stay transmit diversity system.

Theorem 1:The cdf ofer is generally given by noise channel, over the distribution of the effective SNR at
I | Fy () lplyr, Pe) +2P.], v <Ar the receiver-side. If we denote such a performance function by
() = E (7) + plyrs P) [Fy (1) — 1], v >0 * £(7), the average performance of our switch-and-stay transmit

(1) diversity system generally can be calculated as
where we introduced for brevity the short-hand notation

=E=FE = dv, 6
p(r, P.) = (1 — 2 P,) Fy (77). @) [€()] ; §(7) Prer (7) dy (6)
Proof: It can easily be seen that in general with p...(y) according to (5). For determining the average
F — (1—P,)Pro < ~Ino erro (combined) SNR, for example, we sgty) = v whereas for
7 (7) ( ) Protien < 1| i obtaining the average BER in case of coherent binary phase
+ Prol £ Prolyerr < | E:] shift keying, we set(y) = Q(,/27), whereQ(-) denotes the
+ Prof E] Probyer < v|Ex], (3) Gaussian Q-function. Inserting (5) in (6), we get

where F; refers to the event that we switch even if it is not _
necessary, i.e., that a ‘0’ is fed back to the transmitter whiclT —
misinterprets it as a ‘1’, and’, refers to the event that we

. o : - Where
do not switch even if it was requested, what is the case if a _ o0
‘1’ is fed back and we misinterpret it as a ‘0. It can easily =0 :/0 (7)o (7) dy (8)
be shown that Prd&;] = P. (1 — F,,(yr)) and ProfiEs] =
P. F,,(yr). Furthermore, due to the duality of our system wit
a conventional switch-and-stay receive combining scheme
the error-free case, it is straightforward to show that [3]

Zo [+ plyr, P)]—(1-2P) £() py (1) dvs (7)

Iqenotes the corresponding (average) performance in a system

V}/rilthout transmit diversity, i.e., with a single transmit antenna

only. Closed-form expressions f&, are readily available

from literature for a wide variety of performance functions, so

Proldverr < y|no errof that the calculation of the average performance of our system
_ { F, (vr) Fyy (7), v <7 @) reduces in most cases basically to the solution of the single
| Fo() B+ FEy(vr)] — By (), v =1 integral with finite integration limits given in (7).



In order to keep our further analysis as general as possibleCorollary 2: The best possible average performance of our
we consider a broad class of performance functidns in the system generally can be calculated as
following, which we require to satisfy the following properties: _ YT, opt ,
P1) £(7) is a real-valued, strictly monotonic continuous —ort = =0 + (1 —2F%) /0 Fyy(v)€(v)dy.  (11)
function with domainD = R™.

Proof: Insertin opt @according to (9) in (7) and makin
P2) £(v) >0V vy eD. 97T, 0pt gto (9)in(7) g

) o i use of partial integration yields the given expression. =
P3) The performance improves with increasing SNR.€., This general but concise expression reveals that there is a
if £(y) is strictly monotonic increasing, higher valueSinear relationship between the average system performance
reflect a better performance whereas in the case that ibfgy the feedback error probabilify.. Hence, it is possible to
strictly monotonic decreasing, smaller values are bett%rirectly quantify the system performance for a given value of
It can easily be checked that most performance functions pf without the need for lengthy calculations if we know the
practical interest actually satisfy these properties, wherefqsgrformance for the error-free case = 0) as well as=y, i.e.,
this restriction does not represent a very strong limitation. the performance for the case that we have a single transmit
The performance of switch-and-stay diversity schemes geghtenna only, which obviously leads to the same performance
erally is strongly dependent on the choice of the switchings our switched transmit diversity system wifh = 0.5.
thresholdyr, of course. In this regard, we can characterize thlearly, the actual performance degradation due to feedback
optimum threshold leading to the best performance by deriviggrors is generally given bY¢ = Eoptlp, o — Eoptlp, o0 =

a generic expression for it as given by the following theoreng:Pe fw,om E.. (7)€ (+) dv, which can be upper-bounded as
Theorem 2:The optimal switching threshold is independengated in the %IIOWing corollary:

of the feedback error probabiliti. and generally given by corollary 3: For any fading distribution and arbitrary per-

VToopt = £1(Ey), 9) formance functiong(~y), the performance degradatidy: due
to feedback errors can be upper-bounded by
where¢~1(v) denotes the inverse function 6fv). ALl < _

Proof: A necessary requirement for a certain switching |[A¢| < 2P Zo. 12)
thresholdyr to be optimal is that it is a stationary point &f Proof:  Rewriting the general expression fol,
In this regard, we find based on (7) given above by means of partial integration a&,

0 _ _ = 2P [F’Yo (PYT,opt) Zo— ()VT’OW Py (7) 5(7) d’Y] and further
o (1 =2P.)py,(vr) [E0 — E(vr)] 5 (10) ' noting thatF, (vr,0pt) Eo < Zo and [ 7" £(7) py, (7) dy >

0, it directly follows thatA, < 2 P, =. Likewise, it can easily

which equals only zero if we choosg- according to (9). In pa geen that?,, (V7.0p¢) Zo > 0 and vaT,om oo (7) E(y) dy <

order to verify that we really get the optimum this way, W&, and consequenth\, > —2 P, =,. Putting both results
consider the behavior of (10) for thresholds slightly Sma"%gether, we finally 0btair?(12). -

or larger thanyr,,,. Since the maximum feedback erroigefore concluding our generic analysis, we formally prove the
probability is P. = 0.5, in which case we would make randompyitive idea that the optimal switching threshold according
decisions on the feedback bits, it is obvious that2 P. > 0 5 (9) is always a strictly increasing function of the average
in practice. Besidesp,,(y) is always non-negativeZ, is gNR 5, as stated by the following corollary:

independent ofyr and¢'(v) = #5£(7) is always positive it Corollary 4: The optimal switching threshold/r ,,: ac-
&(v) is strictly monotonic increasing and always negative Hording to (9) is unique and a strictly increasing function of
&() is strictly monotonic decreasing. Hence, it can easily hfe average (combined) SNR

seen that we have a change of sign of (10)@t yr o, from Proof: Due to the strict monotonicity of the considered
plus to minus in the first case (maximum) and from minus §gerformance functions, the only thing that has to be shown for
plus in the second case (minimum). Furthermore, due to Pfat purpose is that i€(y) is monotonically increasing, we
(9) has always a unique solution and it can easily be checkesle =,|. <=,|. .. and likewise if¢() is monotonically
that =(yr = 0) = E(yr — o0) = . Since= is under the decreasing, we have|- >Zol., . - . In this regard, we note
afore made assumptions always a continuous functionof that for a given fading distribution, the distribution of the
we finally can conclude together with P3) that,,; according SNR ~¢ at the output of the signal combiner at the receiver-
to (9) is really the globally optimal switching threshold.®  sijde generally represents a scale-family with the average SNR
Please note that the generic expressiomfer,: according to as scale parameter. This implies that the pdf(y) with

(9) is also valid for conventional switch-and-stay receive Converage SNRy’ might be expressed by means of a reference

bining sch(_ames and hence basicaII.yEni.fies th(_a resul_ts aIre%g,y p-.(7) with average SNR one as, (1) = %p% ).
presented in [3], [4]. Furthermore, singg is readily available For strictly monotonic increasing performance functig(s)
in literature for a wide variety of performance functions and _ T o V '
fading distributions, we often can directly determing,,, W€ consequently havéol . =5 Jy €0 ps. (%7 dy
based on (9), without the need for any further calculations.= [;~ & (32 @) py, (2)dz > [~ & (1) py, (2) do = Eo‘%

A general expression for the actual average performance thditereas for strictly monotonic decreasig@y) the last in-

we obtain by usingyr ., is given by the following corollary: equality simply has to be reversed. ]



V. CONCRETEEXAMPLE o - ‘ ‘ — Theory
. . . . 16.4f e o o Simulation [1
In the following, we consider a switch-and-stay transmit {0,0.1;,0.2, 0.3;0.4; 0.5) ™ ™N_

diversity system with MRC combining at the receiver-side 16.2
and 11D Nakagamin fading with integer fading parametes
as a concrete example and we show how our generic results% 15.8f
derived in the previous section can be used to easily investigate g 15 ¢!
the performance of this system in terms of the average SNR, § 15

the ergodic capacity, as well as the average BER for binary 3

161

R [dB]

modulation. It can easily be shown that for such a scenario 15.2 sl
,ymNRx -1 m mNRrx m 15 N ) |
— _ it i i i
P (7) - F(mNRX) ( 7 > € 7, 720 (13) 14'85 10 15 20 25

Switching threshold [dB]

whereI'(-) denotes the well-known gamma function and with

7 as the average SNR per receive antenna. Hence, the avefdjé.  Impact of the switehing tiestiold on the average SHRNGr =

SNR at the output of the MRC combiner is simply given by’ ™"~ 77 ~ + and driierent feedback error probabiliies-

¥ = Nrx 7 and the corresponding cdf can be determined as

mNax—1 | 7\ K for which we get (in bits per channel use)
Fyo(y)=1-e" Z S \=7) . =0 (14)
Pt k! \ 7
where we made use of [7] egs. (3.381,1) and (8.352,1).

" e (3) [ [ () - (5]

Theorem 3:For arbitrary switching thresholdgr, the av-

’ITLNRxfl

1 1 w
Co-m3 2= e

Copt =Co+(1—2F,)

k 2] S
erage SNR at the output of the signal combiner is given by +Z (k) (—1)k=s (ﬁ)
_mNRrx T mN s=1 \7 m
_ (1-2P.)e 5 m Nrx yr =
Tt =75 |1+ T(m Npx 1 1) 5 X [F (8, 7;_;) —F(S,T;2C°)]H ) (18)
(15) - :
whereas for the optimum thresholg ,,; = 7, we obtain where E; (-) denptes the exponential mtggral function and
L_op I(-,-) the upper incomplete gamma function [7].
eftopt = {1 + . —4te (m Npx )™ Nex—1g=mNex | _ Eroof: Now, we havet(y) = Iog2.(1 + ), which clearly
(m Nrx) de) satisfies all properties P1)-P3) agaily corresponds to the

_ _ capacity of a system with one transmit antenna only, which
Proof: If we consider the average SNR as performangg | o from [g], and based on this result we can directly

measure, we set(y) = 7, which obviously satisfies all yoterminey,.,,, by capitalizing on (9) again. For calculating
properties P1)-P3). Clearly, we ha¥g = 7 and consequently o ’

, _ (14t . .
it directly follows from (9) thatyz,,+ = 7. Besides, (15) and ,_ °P"’ we then plug (14) ang' () = ¢ 20— in (11), yielding
(16) can be determined by inserting (13) and (14) in (7) angd 1

(8) and by making use of [7] egs. (8.356,2) and (3.381M). Copt =Co+ (1 -2F) {Co - 1I121-1:| ; 19)
It can easily be checked that fét, = 0 and Ngx = 1, (16)

reduces to the well-known result already presented in [4]. where we have introduced for brevity the short-hand notation

graphical illustration of the impact of the switching threshold ~ ™Nex=1 1 /N NF 2901y s
and the feedback error probability ga¢ is depicted in Fig. 2. 11 = 7 ( 5 ) /0 e 7 v+l dy.
Obviously, we really get the best performance far = 7, k=0 (20)

independently off., and increasing values af. lead 10 & peitoming the substitution = v + 1 and making use of the
linear decrease Gfes. Furthermore, it can be seen that therSinomial theoremZ, can be reformulated as

is basically perfect match between our analytical results and N N N
results obtained from Monte Carlo simulations, what verifieg, — ™+ [El <m _RX> B (me QCO)] _ 1,
the validity of our theoretical analysis.

(21)
B. System Capacity with
Theorem 4:The optimum switching threshold which max- mNrx—1 mNgx k mNpx
imizes the capacity of our system is giveny,,,; = 2¢° — 1 I, = Z %l 5 e 7
with k=1

e% e m m k k 2¢ mNRxz
- - A 5 s—=1(_1\k—s L
e kZ:O ( & 77) (n) @0 XZ (S>/1 (DR e T TR d2,(22)



6

which after some basic mathematical manipulations can be
solved in closed-form by making use of [7] eq. (3.381, M.
Please note that to the best of our knowledge, the problem of
finding an analytical closed-form expression for the capacity
of switch-and-stay diversity schemes as given by Theorem 4
has only been considered in [9] before. However, in contrast
to (18), the result in [9] corresponds to an infinite series and
therefore has to be truncated for numerical evaluation, thus
always inducing computational errors.

The impact of the feedback error probability on the maxi-
mum capacity for a system with optimum switching threshold
is illustrated in Fig. 3. Since it is expected that generally
P, <« 0.1 in practical systems, the capacity reduction due to
feedback error obviously can usually be reasonably neglectgg. 3

— Theory
o Simulation

(&)
T

Pe ={0; 0.1; 0.2; 0.3; 0.4;

I
:

o.

w
T

N

System Capacity [bits per channel use]

=

5 10 15
Average SNR per receive antenna [dB]

Impact of the feedback error probabilii on the system capacity

. for Nrx =1, m = 1 (Rayleigh-fading), = opt-
C. Average Bit Error Rate or Nrx =1,m =1 (Rayleigh-fading), andr = ropt

Theorem 5:The optimum switching threshold which mini-
mizes the average BER for coherent binary phase shift keying VI. CONCLUSION
Gaussian Q-function and where mit diversity systems in presence of an erroneous feedback
) s Npx-—1 (%) link. First, we have determined the distribution of the induced
Po=5 [1—/—1— Y k| (23 L ; & TLRcHon ¢
2 m+n = [4 (1+ ;,’7)] probability for arbitrary fading distributions and we have
determined generic but simple expressions for the average
. pérformance and optimal switching threshold for a broad
transmit antenna only. : o i
class of performance functions, thus unifying and generaliz-
- ing existing results in literature. In a second step, we have
we set{(y) = Q(v29). The average BER for a Systemconsidered a system with MRC combining at the receiver-side

. . — 2 . .
is given byyr op = 5 [Q71(Po)] 7, with @ ~'() as the inverse  \We have analyzed the performance of switch-and-stay trans-
SNR at the receiver-side as a function of the feedback error
denotes the average BER for a similar system with one
Proof: For investigating the average BER performance
without transmit diversity according to (23) is well-known

from literature and can be obtained from the results providegI
in [10], for example. Based on this result, we then can directfg
determineyr ;. by means of (9) again.

Theorem 6:The minimum average BER of coherent binary
phase shift keying, which can be obtained by using the
optimum switching threshold, is given by 1]

_ _ L 2 S | m\* [
Pop=Po—(1-2P) |--PR— > —— (=
opt = 1 — ( ) |3 P 27k <n)
ke 1 3
m
I Fp{k+ 5770 —+1 24
(,nn_’_1> L<+2’YT,pt<n+)> (24) n

with yr o, and P, according to Theorem 5 and;(-,-) as
the lower incomplete gamma function [7].

Proof: First of all, it can easily be shown thgt(¢)
= 2_7176_W. Inserting this relationship together with (14) in
(11), the calculation of the average BER can traced back to the
calculation of two different types of integrals, which can both 7
be solved in closed-form by making use of [7] egs. (3.361,1
and (3.381,1). If we further exploit thaterf (/77 5p¢) = 3 8]
Py, we finally end up with the given formula. ]

Please note that a similar analysis and particularly the
derivation of the optimum switching threshold can be dongg]
for a wide variety of different coherent and noncoherent mod-
ulation schemes in a straightforward manner, what, howevgg,
is not explicitly presented here due to space constraints.

(5]

and Nakagamin fading as a concrete example and we have
own how the previously derived generic results can be used
easily investigate the performance of this system in terms
of the average SNR, the capacity, and the average BER.
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