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Abstract— We analyze the performance of switch-and-stay
transmit diversity systems in presence of an erroneous feedback
link. First of all, the analysis is conducted for arbitrary fading
distributions and a rather general class of performance functions.
Assuming a certain feedback error probability Pe, we determine
the distribution of the signal-to-noise ratio (SNR) at the receiver-
side and we provide a generic expression for the optimum
switching threshold, which turns out to be independent ofPe.
Furthermore, it is shown that the performance degradation due
to feedback errors is always a linear function of the feedback
error rate. Finally, we consider a concrete system as an example
and we demonstrate how our generic results can be used to easily
investigate the performance of this system in terms of the average
SNR, the system capacity as well as the average bit error rate.

I. I NTRODUCTION

Switched diversity schemes are known to offer a good trade-
off between complexity, hardware costs, and the capability
to substantially mitigate the detrimental effects of multipath
fading on the performance of wireless communication systems
[1]–[5]. In case that only one out of several antenna elements
may be used, it is clearly optimal to select always the antenna
for which the signal-to-noise ratio (SNR) at the receiver-side
is maximized, but this requires permanent estimation of the
SNR that could be achieved with any antenna element and
therefore might significantly increase the complexity compared
to non-diversity schemes [1]. With switched diversity systems,
in contrast, a certain antenna element is generally used as long
as the induced signal quality is acceptable, i.e., as long as the
corresponding SNR exceeds a certain threshold value. If the
SNR falls below this threshold, different strategies might be
realized, such as to simply switch to the next antenna element
(switch-and-stay) or to switch to the next antenna element for
which the induced SNR is acceptable (switch-and-examine).

The performance analysis and optimization of switched
diversity schemes have attracted a lot of research attention
during the past decade, see for example [2]–[6], but mostly
these schemes have only been applied at the receiver-side. The
main difference in case that we perform switched diversity at
the transmitter-side is that we usually require an efficient feed-
back link for that purpose, via which the receiver can signal the
transmitter when it should switch to another antenna element
since the SNR becomes unacceptable [6]. However, in practice
such a feedback link might induce feedback errors as well as
a certain feedback delay, wherefore the performance analysis
of switched diversity reception systems generally cannot be
directly applied to switched transmit diversity schemes as well.

In this paper, we analyze—to the best of our knowledge
for the first time—the performance of switch-and-stay transmit
diversity systems in presence of an erroneous feedback link. In
a first step, we conduct a rather general performance analysis
by considering arbitrary fading distributions as well as a broad
class of performance functions, for which we derive generic
expressions for the average system performance, the optimum
switching threshold and the performance degradation due to
feedback errors. In a second step, we consider a system with
maximum ratio combining (MRC) at the receiver-side and
Nakagami-m fading as a concrete example and we show how
the generic results presented before can be used to easily derive
analytical closed-form expressions for the average SNR, the
capacity, and the average BER of this system. Please note that
even though we focus on switched transmit diversity herein,
our results can readily be applied to switch-and-stay receive
combining as well by exploiting the duality between both
approaches in the absence of feedback errors.

The remainder of this paper is structured as follows: In Sec-
tion II, we shortly introduce our system model. The statistics
of the SNR at the receiver-side are derived in Section III,
followed by the generic performance analysis in Section IV.
In Section V, we consider a concrete system as an example
before finally the conclusions are given in Section VI.

II. SYSTEM MODEL

We consider a block-fading MIMO system with two trans-
mit antennas andNRX receive antennas as depicted in Fig. 1.
The basic mode of operation is basically similar to the one
already considered in [6]. The transmitter uses always only
one antenna for data transmission while the receiver generally
combines the received signals first of all in an appropriate way
(using MRC, equal gain combining, or selection combining,
for example) before performing the actual data detection. The
selection of an appropriate transmit antenna is done based
upon feedback information from the receiver. For that purpose,
the receiver periodically measures the instantaneous SNRγeff

at the output of the signal combiner and compares it to a given
threshold valueγT . If γeff is smaller thanγT , a ’1’ is fed back
to the transmitter, indicating that it should switch to the other
antenna whereas otherwise a ’0’ is fed back, indicating that
no switching is required. Please note that for proper operation
the feedback interval should be in the order of the coherence
time of the channel, so that the channel is approximately time-
invariant during each interval, what is always assumed in the
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Fig. 1. Considered switch-and-stay transmit diversity system.

following. Besides, the feedback bit might be erroneously
detected by the transmitter, what is taken into account by
assuming a certain feedback error probabilityPe. The receiver
itself is supposed to have always perfect channel knowledge.

III. SNR STATISTICS

First of all, we determine the distribution of the SNRγeff as
indicated in Fig. 1. Let us denote the (instantaneous) combined
SNR at the receiver-side in case that always the same transmit
antenna is used (i.e., for a system without transmit diversity)
by γ0 in the following and the corresponding expected value
by E[γ0] = γ̄. For simplicity, we assume that the distribution
of γ0 does not depend on which of the two antenna elements is
active. A generalization of our results to the case of unequal
SNR distributions induced by the two transmit antennas is
straightforward, but would significantly complicate notation.
If we denote the cumulative distribution function (cdf) ofγ0

by Fγ0(γ), the cdf ofγeff generally can be expressed in terms
of Fγ0(γ), the feedback error probabilityPe as well as the
switching thresholdγT as given by the following theorem:

Theorem 1:The cdf ofγeff is generally given by

Fγeff(γ) =
{

Fγ0(γ) [ρ(γT , Pe) + 2 Pe] , γ < γT

Fγ0(γ) + ρ(γT , Pe) [Fγ0(γ)− 1] , γ ≥ γT
,

(1)
where we introduced for brevity the short-hand notation

ρ(γT , Pe) = (1− 2 Pe) Fγ0(γT ). (2)

Proof: It can easily be seen that in general

Fγeff(γ) = (1− Pe) Prob[γeff ≤ γ|no error]
+ Prob[E1] Prob[γeff ≤ γ|E1]
+ Prob[E2] Prob[γeff ≤ γ|E2], (3)

whereE1 refers to the event that we switch even if it is not
necessary, i.e., that a ‘0’ is fed back to the transmitter which
misinterprets it as a ‘1’, andE2 refers to the event that we
do not switch even if it was requested, what is the case if a
‘1’ is fed back and we misinterpret it as a ‘0’. It can easily
be shown that Prob[E1] = Pe (1 − Fγ0(γT )) and Prob[E2] =
Pe Fγ0(γT ). Furthermore, due to the duality of our system with
a conventional switch-and-stay receive combining scheme in
the error-free case, it is straightforward to show that [3]

Prob[γeff ≤ γ|no error]

=
{

Fγ0(γT ) Fγ0(γ), γ < γT

Fγ0(γ) [1 + Fγ0(γT )]− Fγ0(γT ), γ ≥ γT
. (4)

Besides, whenever we switch to the other antenna element, the
distribution ofγeff corresponds to the distribution of the SNR
without transmit diversity since we do not have any additional
information about the SNR induced by that antenna. Therefore,
we clearly can say that Prob[γeff ≤ γ|E1] = Fγ0(γ). If we
do not switch even though we are supposed to,γeff surely is
always smaller than the threshold valueγT , so that we get
Prob[γeff ≤ γ|E2] = min

{
Fγ0 (γ)

Fγ0 (γT ) , 1
}

. Putting everything
together then yields after some rearrangements to (1).
It can easily be seen that in the error-free case (Pe = 0), (1)
reduces to the well-known result from [3], [4] whereas in the
worst case (Pe = 0.5), we haveFγeff = Fγ0(γ), i.e., in this case
our system has exactly the same performance as a system with
only one transmit antenna, what is quite obvious since in this
case the feedback bits are totally unreliable and hence useless.

Corollary 1: The probability density function (pdf) of the
SNR γeff is given by

pγeff(γ) =
{

pγ0(γ) [ρ(γT , Pe) + 2 Pe] , γ < γT

pγ0(γ) [1 + ρ(γT , Pe)] , γ ≥ γT
(5)

with ρ(γT , Pe) according to (2) andpγ0(γ) = ∂
∂γ Fγ0(γ) .

Proof: It can easily be seen thatpγeff(γ) = ∂
∂γ Fγeff(γ)

with Fγeff(γ) according to (1).

IV. GENERIC PERFORMANCEANALYSIS

Many important measures characterizing the performance
of communication systems in fading environments, such as
the average symbol error rate (SER), the average bit error
rate (BER), or the ergodic system capacity, can be determined
by averaging appropriate performance functions, which reflect
the corresponding performance in an additive white Gaussian
noise channel, over the distribution of the effective SNR at
the receiver-side. If we denote such a performance function by
ξ(γ), the average performance of our switch-and-stay transmit
diversity system generally can be calculated as

Ξ = Eγ [ξ(γ)] =
∫ ∞

0

ξ(γ) pγeff(γ) dγ, (6)

with pγeff(γ) according to (5). For determining the average
(combined) SNR, for example, we setξ(γ) = γ whereas for
obtaining the average BER in case of coherent binary phase
shift keying, we setξ(γ) = Q(

√
2 γ), whereQ(·) denotes the

Gaussian Q-function. Inserting (5) in (6), we get

Ξ = Ξ0 [1 + ρ(γT , Pe)]−(1−2 Pe)
∫ γT

0

ξ(γ) pγ0(γ) dγ, (7)

where

Ξ0 =
∫ ∞

0

ξ(γ) pγ0(γ) dγ (8)

denotes the corresponding (average) performance in a system
without transmit diversity, i.e., with a single transmit antenna
only. Closed-form expressions forΞ0 are readily available
from literature for a wide variety of performance functions, so
that the calculation of the average performance of our system
reduces in most cases basically to the solution of the single
integral with finite integration limits given in (7).



In order to keep our further analysis as general as possible,
we consider a broad class of performance functionsξ(γ) in the
following, which we require to satisfy the following properties:
P1) ξ(γ) is a real-valued, strictly monotonic continuous

function with domainD = R+.
P2) ξ(γ) ≥ 0 ∀ γ ∈ D.
P3) The performance improves with increasing SNRγ, i.e.,

if ξ(γ) is strictly monotonic increasing, higher values
reflect a better performance whereas in the case that it is
strictly monotonic decreasing, smaller values are better.

It can easily be checked that most performance functions of
practical interest actually satisfy these properties, wherefore
this restriction does not represent a very strong limitation.

The performance of switch-and-stay diversity schemes gen-
erally is strongly dependent on the choice of the switching
thresholdγT , of course. In this regard, we can characterize the
optimum threshold leading to the best performance by deriving
a generic expression for it as given by the following theorem:

Theorem 2:The optimal switching threshold is independent
of the feedback error probabilityPe and generally given by

γT,opt = ξ−1(Ξ0), (9)

whereξ−1(γ) denotes the inverse function ofξ(γ).
Proof: A necessary requirement for a certain switching

thresholdγT to be optimal is that it is a stationary point ofΞ.
In this regard, we find based on (7)

∂

∂γT
Ξ = (1− 2 Pe)pγ0(γT ) [Ξ0 − ξ(γT )] , (10)

which equals only zero if we chooseγT according to (9). In
order to verify that we really get the optimum this way, we
consider the behavior of (10) for thresholds slightly smaller
or larger thanγT,opt. Since the maximum feedback error
probability isPe = 0.5, in which case we would make random
decisions on the feedback bits, it is obvious that1− 2 Pe > 0
in practice. Besides,pγ0(γ) is always non-negative,Ξ0 is
independent ofγT and ξ′(γ) = ∂

∂γ ξ(γ) is always positive if
ξ(γ) is strictly monotonic increasing and always negative if
ξ(γ) is strictly monotonic decreasing. Hence, it can easily be
seen that we have a change of sign of (10) atγT = γT,opt from
plus to minus in the first case (maximum) and from minus to
plus in the second case (minimum). Furthermore, due to P1),
(9) has always a unique solution and it can easily be checked
that Ξ(γT = 0) = Ξ(γT → ∞) = Ξ0. SinceΞ is under the
afore made assumptions always a continuous function ofγT ,
we finally can conclude together with P3) thatγT,opt according
to (9) is really the globally optimal switching threshold.
Please note that the generic expression forγT,opt according to
(9) is also valid for conventional switch-and-stay receive com-
bining schemes and hence basically unifies the results already
presented in [3], [4]. Furthermore, sinceΞ0 is readily available
in literature for a wide variety of performance functions and
fading distributions, we often can directly determineγT,opt

based on (9), without the need for any further calculations.
A general expression for the actual average performance that

we obtain by usingγT,opt is given by the following corollary:

Corollary 2: The best possible average performance of our
system generally can be calculated as

Ξopt = Ξ0 + (1− 2 Pe)
∫ γT,opt

0

Fγ0(γ) ξ′(γ) dγ. (11)

Proof: InsertingγT,opt according to (9) in (7) and making
use of partial integration yields the given expression.
This general but concise expression reveals that there is a
linear relationship between the average system performance
and the feedback error probabilityPe. Hence, it is possible to
directly quantify the system performance for a given value of
Pe without the need for lengthy calculations if we know the
performance for the error-free case (Pe = 0) as well asΞ0, i.e.,
the performance for the case that we have a single transmit
antenna only, which obviously leads to the same performance
as our switched transmit diversity system withPe = 0.5.
Clearly, the actual performance degradation due to feedback
errors is generally given by∆ξ = Ξopt|Pe=0 − Ξopt|Pe>0 =
2 Pe

∫ γT,opt

0
Fγ0(γ) ξ′(γ) dγ, which can be upper-bounded as

stated in the following corollary:
Corollary 3: For any fading distribution and arbitrary per-

formance functionsξ(γ), the performance degradation∆ξ due
to feedback errors can be upper-bounded by

|∆ξ| ≤ 2 Pe Ξ0. (12)

Proof: Rewriting the general expression for∆ξ

given above by means of partial integration as∆ξ

= 2Pe

[
Fγ0(γT,opt) Ξ0 −

∫ γT,opt

0
pγ0(γ) ξ(γ) dγ

]
and further

noting thatFγ0(γT,opt) Ξ0 ≤ Ξ0 and
∫ γT,opt

0
ξ(γ) pγ0(γ) dγ ≥

0, it directly follows that∆ξ ≤ 2 Pe Ξ0. Likewise, it can easily
be seen thatFγ0(γT,opt) Ξ0 ≥ 0 and

∫ γT,opt

0
pγ0(γ) ξ(γ) dγ ≤

Ξ0 and consequently∆ξ ≥ −2 Pe Ξ0. Putting both results
together, we finally obtain (12).
Before concluding our generic analysis, we formally prove the
intuitive idea that the optimal switching threshold according
to (9) is always a strictly increasing function of the average
SNR γ̄, as stated by the following corollary:

Corollary 4: The optimal switching thresholdγT,opt ac-
cording to (9) is unique and a strictly increasing function of
the average (combined) SNR̄γ.

Proof: Due to the strict monotonicity of the considered
performance functions, the only thing that has to be shown for
that purpose is that ifξ(γ) is monotonically increasing, we
have Ξ0|γ̄1

<Ξ0|γ̄2>γ̄1
and likewise ifξ(γ) is monotonically

decreasing, we haveΞ0|γ̄1
>Ξ0|γ̄2>γ̄1

. In this regard, we note
that for a given fading distribution, the distribution of the
SNR γeff at the output of the signal combiner at the receiver-
side generally represents a scale-family with the average SNR
as scale parameter. This implies that the pdfpγ′(γ) with
average SNR̄γ′ might be expressed by means of a reference
pdf pγr

(γ) with average SNR one aspγ′(γ) = 1
γ̄′ pγr

(
γ
γ̄′

)
.

For strictly monotonic increasing performance functionsξ(γ),
we consequently havēΞ0

∣∣
γ̄2>γ̄1

= 1
γ̄2

∫∞
0

ξ(γ) pγr

(
γ
γ̄2

)
dγ

=
∫∞
0

ξ (γ̄2 x) pγr (x) dx >
∫∞
0

ξ (γ̄1 x) pγr (x) dx = Ξ̄0

∣∣
γ̄1

whereas for strictly monotonic decreasingξ(γ) the last in-
equality simply has to be reversed.



V. CONCRETEEXAMPLE

In the following, we consider a switch-and-stay transmit
diversity system with MRC combining at the receiver-side
and IID Nakagami-m fading with integer fading parameterm
as a concrete example and we show how our generic results
derived in the previous section can be used to easily investigate
the performance of this system in terms of the average SNR,
the ergodic capacity, as well as the average BER for binary
modulation. It can easily be shown that for such a scenario

pγ0(γ) =
γmNRX−1

Γ(mNRX)

(
m

η̄

)mNRX

e−γ m
η̄ , γ ≥ 0 (13)

whereΓ(·) denotes the well-known gamma function and with
η̄ as the average SNR per receive antenna. Hence, the average
SNR at the output of the MRC combiner is simply given by
γ̄ = NRX η̄ and the corresponding cdf can be determined as

Fγ0(γ) = 1− e−
m
η̄ γ

mNRX−1∑
k=0

1
k!

(
m

η̄
γ

)k

, γ ≥ 0 (14)

where we made use of [7] eqs. (3.381,1) and (8.352,1).

A. Average SNR

Theorem 3:For arbitrary switching thresholdsγT , the av-
erage SNR at the output of the signal combiner is given by

γ̄eff = γ̄

[
1 +

(1− 2 Pe) e−
m NRX γT

γ̄

Γ(m NRX + 1)

(
m NRX γT

γ̄

)m NRX
]

(15)
whereas for the optimum thresholdγT,opt = γ̄, we obtain

γ̄eff,opt = γ̄

[
1 +

1− 2 Pe

Γ(m NRX)
(m NRX)m NRX−1 e−m NRX

]
.

(16)
Proof: If we consider the average SNR as performance

measure, we setξ(γ) = γ, which obviously satisfies all
properties P1)-P3). Clearly, we haveΞ0 = γ̄ and consequently
it directly follows from (9) thatγT,opt = γ̄. Besides, (15) and
(16) can be determined by inserting (13) and (14) in (7) and
(8) and by making use of [7] eqs. (8.356,2) and (3.381,1).
It can easily be checked that forPe = 0 andNRX = 1, (16)
reduces to the well-known result already presented in [4]. A
graphical illustration of the impact of the switching threshold
and the feedback error probability onγ̄eff is depicted in Fig. 2.
Obviously, we really get the best performance forγT = γ̄,
independently ofPe, and increasing values ofPe lead to a
linear decrease of̄γeff. Furthermore, it can be seen that there
is basically perfect match between our analytical results and
results obtained from Monte Carlo simulations, what verifies
the validity of our theoretical analysis.

B. System Capacity

Theorem 4:The optimum switching threshold which max-
imizes the capacity of our system is given byγT,opt = 2C0−1
with

C0 =
e

m
η̄

ln 2

m NRX−1∑
k=0

Γ
(
−k,

m

η̄

) (
m

η̄

)k

, (17)
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Fig. 2. Impact of the switching threshold on the average SNR forNRX =
1, m = 1, γ̄ = 15 dB, and different feedback error probabilitiesPe.

for which we get (in bits per channel use)

Copt = C0 + (1− 2 Pe)

[
C0 −

1
ln 2

mNRX−1∑
k=0

1
k!

e
m
η̄

×
(

m

η̄

)k [
(−1)k

[
E1

(
m

η̄

)
− E1

(
m

η̄
2C0

)]
+

k∑
s=1

(
k

s

)
(−1)k−s

( η̄

m

)s

×
[
Γ
(

s,
m

η̄

)
− Γ

(
s,

m

η̄
2C0

)]]]
, (18)

where E1(·) denotes the exponential integral function and
Γ(·, ·) the upper incomplete gamma function [7].

Proof: Now, we haveξ(γ) = log2(1 + γ), which clearly
satisfies all properties P1)-P3) again.C0 corresponds to the
capacity of a system with one transmit antenna only, which
is known from [8], and based on this result we can directly
determineγT,opt by capitalizing on (9) again. For calculating

Copt, we then plug (14) andξ′(γ) = (1+γ)−1

ln 2 in (11), yielding
to

Copt = C0 + (1− 2 Pe)
[
C0 −

1
ln 2

I1

]
, (19)

where we have introduced for brevity the short-hand notation

I1 =
mNRX−1∑

k=0

1
k!

(
mNRX

γ̄

)k ∫ 2C0−1

0

e−
mNRX

γ̄ γ γk

γ + 1
dγ.

(20)
Performing the substitutionz = γ + 1 and making use of the
binomial theorem,I1 can be reformulated as

I1 = e
mNRX

γ̄

[
E1

(
mNRX

γ̄

)
− E1

(
mNRX

γ̄
2C0

)]
− I2,

(21)
with

I2 =
mNRX−1∑

k=1

1
k!

(
mNRX

γ̄

)k

e
mNRX

γ̄

×
k∑

s=0

(
k

s

)∫ 2C0

1

zs−1 (−1)k−s e
mNRX z

−γ̄ dz,(22)



which after some basic mathematical manipulations can be
solved in closed-form by making use of [7] eq. (3.381,1).
Please note that to the best of our knowledge, the problem of
finding an analytical closed-form expression for the capacity
of switch-and-stay diversity schemes as given by Theorem 4
has only been considered in [9] before. However, in contrast
to (18), the result in [9] corresponds to an infinite series and
therefore has to be truncated for numerical evaluation, thus
always inducing computational errors.

The impact of the feedback error probability on the maxi-
mum capacity for a system with optimum switching threshold
is illustrated in Fig. 3. Since it is expected that generally
Pe � 0.1 in practical systems, the capacity reduction due to
feedback error obviously can usually be reasonably neglected.

C. Average Bit Error Rate

Theorem 5:The optimum switching threshold which mini-
mizes the average BER for coherent binary phase shift keying
is given byγT,opt = 1

2

[
Q−1(P̄0)

]2
, with Q−1(·) as the inverse

Gaussian Q-function and where

P̄0 =
1
2

[
1−

√
η̄

m + η̄

m NRX−1∑
k=0

(
2k
k

)[
4
(
1 + η̄

m

)]k
]

. (23)

denotes the average BER for a similar system with one
transmit antenna only.

Proof: For investigating the average BER performance,
we set ξ(γ) = Q(

√
2 γ). The average BER for a system

without transmit diversity according to (23) is well-known
from literature and can be obtained from the results provided
in [10], for example. Based on this result, we then can directly
determineγT,opt by means of (9) again.

Theorem 6:The minimum average BER of coherent binary
phase shift keying, which can be obtained by using the
optimum switching threshold, is given by

P̄opt = P̄0 − (1− 2Pe)

[
1
2
− P̄0 −

mNRX−1∑
k=0

1
2
√

π k!

(
m

η̄

)k

×

(
1

m
η̄ + 1

)k+ 1
2

ΓL

(
k +

1
2
, γT,opt

(
m

η̄
+ 1
)) (24)

with γT,opt and P̄0 according to Theorem 5 andΓL(·, ·) as
the lower incomplete gamma function [7].

Proof: First of all, it can easily be shown thatξ′(ζ)
= −1

2
√

π γ e−γ . Inserting this relationship together with (14) in
(11), the calculation of the average BER can traced back to the
calculation of two different types of integrals, which can both
be solved in closed-form by making use of [7] eqs. (3.361,1)
and (3.381,1). If we further exploit that12erf

(√
γT,opt

)
= 1

2 −
P̄0, we finally end up with the given formula.

Please note that a similar analysis and particularly the
derivation of the optimum switching threshold can be done
for a wide variety of different coherent and noncoherent mod-
ulation schemes in a straightforward manner, what, however,
is not explicitly presented here due to space constraints.
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Fig. 3. Impact of the feedback error probabilityPe on the system capacity
for NRX = 1, m = 1 (Rayleigh-fading), andγT = γT,opt.

VI. CONCLUSION

We have analyzed the performance of switch-and-stay trans-
mit diversity systems in presence of an erroneous feedback
link. First, we have determined the distribution of the induced
SNR at the receiver-side as a function of the feedback error
probability for arbitrary fading distributions and we have
determined generic but simple expressions for the average
performance and optimal switching threshold for a broad
class of performance functions, thus unifying and generaliz-
ing existing results in literature. In a second step, we have
considered a system with MRC combining at the receiver-side
and Nakagami-m fading as a concrete example and we have
shown how the previously derived generic results can be used
to easily investigate the performance of this system in terms
of the average SNR, the capacity, and the average BER.
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