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Abstract— We analyze the performance of multiple-input mul-
tiple-output (MIMO) systems employing orthogonal space-time
block codes (STBC) combined with receive antenna selection in
Nakagami-m fading channels with possible spatial correlation
at the transmitter-side. We derive exact analytical closed-form
expressions for the system capacity as well as the average symbol
error rate (SER) in case of M -PSK and M -QAM modulation,
respectively. Furthermore, we determine the corresponding high
SNR asymptotes, which are significantly simpler than the exact
results while providing important insights into the SER perfor-
mance at high SNRs. Finally, we compare the performance of our
system with the performance of a full-complexity system without
receive antenna selection as well as a single-input multiple-output
system with selection combining and we verify the validity of our
analytical results by means of Monte-Carlo simulations.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems offer nu-
merous benefits over conventional single-input single-output
(SISO) systems, such as the potential to facilitate considerably
higher data rates or to significantly improve the reliability of
a wireless link. However, this superior performance generally
comes along with an increased signal processing complexity
as well as substantially higher hardware requirements, what
hence represents a limiting factor for the production and wide-
spread deployment of low-cost MIMO devices. A promising
approach for partially alleviating these drawbacks is to make
use of some form of antenna selection, whereby many of the
advantages offered by MIMO systems can be retained while
the number of required radio frequency (RF) chains and hence
the costs and the complexity can be significantly reduced [1].

In this paper, we analyze the performance of MIMO systems
employing orthogonal space-time block codes (STBC) com-
bined with antenna selection at the receiver-side. This might
be an attractive solution for the downlink of cellular networks,
for example, where the complexity and the costs of the mobile
user equipment generally should be kept as low as possible
whereas this is usually only of secondary importance for the
base stations. Previous studies dealing with the combination of
antenna selection and orthogonal STBCs have mainly focused
on performing antenna subset selection at the transmitter-side
(see for example [2], [3] and references therein), but only very
few results have been reported concerning the performance of
orthogonal STBC with receive antenna selection so far. In [4],
for instance, the authors present upper bounds on the average
bit error rates for binary modulation in uncorrelated Rayleigh
fading as well as an exact expression for the special case that

the well-known Alamouti scheme is employed. Besides, the
effects of channel estimation errors on the performance of
orthogonal STBCs combined with receive antenna selection
recently have been investigated in [5]. However, to the best
of our knowledge, a comprehensive performance analysis of
orthogonal STBCs with receive antenna selection has not been
presented yet, what we therefore will do herein. In particular,
we derive exact analytical closed-form expressions for the
capacity of such a system as well as the average symbol
error rates (SER) in case ofM -ary quadrature amplitude
modulation (M -QAM) and M -ary phase shift keying (M -
PSK), considering Nakagami-m fading channels with possible
spatial correlation at the transmitter-side. In addition, we
compare the performance of our system with the performance
of a full-complexity system as well as a single-input multiple-
output (SIMO) system with selection combining.

The remainder of this paper is structured as follows: In
Section II we outline our system and channel model whereas
the statistics of the effective SNR at the receiver-side are de-
termined in Section III. The actual capacity and SER analysis
is presented in Section IV, followed by numerical results in
Section V as well as some concluding remarks in Section VI.

II. SYSTEM AND CHANNEL MODEL

We consider a frequency-flat block-fading MIMO system
with NTX transmit antennas andNRX receive antennas. In the
discrete-time equivalent baseband domain, the channel can be
modeled by the matrixH ∈ CNRX×NT X , where the (i, j)-th
elementhi,j corresponds to the channel coefficient between
the j-th transmit antenna and thei-th receive antenna. The
phase of each channel coefficient is assumed to be uniformly
distributed in[0; 2 π) whereas the magnitudes are supposed to
be Nakagami-m variates with unity average power gain and
integer fading parameterm. Furthermore, the channel might
exhibit spatial correlation at the transmitter-side, i.e., entries
standing in the same row ofH might be correlated. Please note
that the assumption of spatial correlation at the transmitter-side
only is valid in urban scenarios, for example, where a base
station (transmitter) is mounted on top of the roofs whereas
the mobile terminals (receivers) are located in rich-scattering
environments due to surrounding buildings, cars, and so on.

The transmitter encodes the data to be sent by means of
an orthogonal STBC with code rateRC while the receiver—
which is assumed to have perfect knowledge of the channel—
selects always only the best out of the availableNRX receive



antenna elements for processing the faded received signals,
which are additionally perturbed by additive white Gaussian
noise. It is well-known that after appropriate signal combining,
orthogonal STBCs transform a MIMO system into a set of
equivalent SISO channels [6] and in case that thei-th receive
antenna is selected, it can easily be shown that these equivalent
SISO channels have the effective signal-to-noise ratio (SNR)

γi =
γ̄

RC NTX

NT X∑
j=1

|hi,j |2 = γ0

NT X∑
j=1

|hi,j |2, (1)

with the short-hand notationγ0 = γ̄/(RC NTX), whereγ̄ de-
notes the average SNR per receive antenna. Clearly, selecting
the best antenna hence corresponds to selecting the antenna
for which this effective SNR is maximized.

III. SNR STATISTICS

A Nakagami-m variate with integer fading parameterm and
unity average power gain generally can be considered as the
square root of the sum of2 m squared i.i.d. Gaussian random
variables with zero mean and variance1/(2m) [7]. In presence
of spatial correlation at the transmitter-side only, it is therefore
straightforward to model the magnitude of the coefficient

hi,j as |hi,j | =
√∑m

l=1 |xl
i,j |2, where xl

i,j is the (i, j)-th
entry of theNRX × NTX random matrixXl (l = 1, . . . ,m).
These random matrices are i.i.d. circularly symmetric complex
Gaussian distributed with zero mean and covariance matrix
1
m (ΛTX ⊗ INRX

), where ΛTX represents the normalized
transmit correlation matrix whose diagonal elements are all
equal to one,In is the identity matrix of dimensionn and
⊗ denotes the matrix Kronecker product. Please note that the
elements ofΛTX can be directly related to various physical
propagation parameters such as the antenna spacing, mean
angle of arrival, and angular spread, for instance, what makes
this model especially suitable for theoretical investigations.

Following the approach outlined in [7], it can be shown that
the moment-generating function (mgf) ofγi is given by

Mγi
(s) =

[
det
(

INT X
− s

γ0

m
ΛTX

)]−m

, (2)

where det(·) denotes the determinant operator. In the follow-
ing, we assume without loss of generality thatΛTX has P
distinct non-zero eigenvaluesλ1, λ2, . . . , λP with multiplici-
ties α1, α2, . . . , αP , respectively. Consequently, it can easily
be seen that (2) can be rewritten as

Mγi(−s) =
P∏

j=1

1
(1 + s εj)

µj
, (3)

where we have introduced for brevity the short-hand notations

µj = m αj (4)

εj =
γ0

m
λj . (5)

Expanding this term into partial fractions, we obtain

Mγi
(−s) =

P∑
j=1

µj∑
k=1

ξj,k

(1 + s εj)
k
, (6)

where the expansion coefficientsξj,k can be calculated as

ξj,k =
ε
k−µj

j

(µj − k)!
∂µj−k

∂sµj−k

 P∏
ν=1
ν 6=j

1
(1 + s εν)µν


∣∣∣∣∣∣∣
s=−1

εj

. (7)

The probability density function (pdf) ofγi then corresponds
to the inverse Laplace transform ofMγi

(−s) and is given by

pγi
(ζ) =

P∑
j=1

µj∑
k=1

ξj,k ζk−1

Γ(k) εk
j

e
− ζ

εj , ζ ≥ 0 (8)

whereΓ(·) denotes the well-known gamma function [8]. The
corresponding cumulative distribution function (cdf)Fγi

(ζ)
=
∫ ζ

0
pγi

(t) dt consequently can be obtained by capitalizing
on [8] eqs. (3.381,1) and (8.352,1) as well as the fact that∑P

j=1

∑µj

k=1 ξj,k = 1 (what can readily be checked by com-
paring (6) with (3)) as

Fγi(ζ) = 1−
P∑

j=1

µj∑
k=1

k−1∑
t=0

ξj,k

Γ(t + 1)

(
ζ

εj

)t

e
− ζ

εj , ζ ≥ 0.

(9)
As already mentioned before, the receiver always selects

the antenna for which the effective SNR according to (1) is
maximized, i.e., the actual SNRγS of the selected branch is
given by γS = max{γ1, γ2, . . . , γNRX

} Due to the statistical
independence of allγi, the cdf ofγS is then simply given by
FγS(ζ) =

∏NRX

i=1 Fγi
(ζ) = (Fγi

(ζ))NRX and the corresponding
pdf hence can be expressed as

pγS(ζ) =
∂

∂ζ
FγSC(ζ) = NRX pγi

(ζ) (Fγi
(ζ))NRX−1

, ζ ≥ 0.

(10)
Inserting (8) and (9) in (10) and using [8] eq. (1.111), we get

pγS(ζ) = NRX

P∑
ν=1

µν∑
τ=1

NRX−1∑
n=0

(
NRX − 1

n

)
ξν,τ ζτ−1

Γ(τ) ετ
ν

×e−
ζ

εν

− P∑
j=1

µj∑
k=1

k−1∑
t=0

ξj,k

(
ζ
εj

)t

Γ(t + 1)
e
− ζ

εj


n

(11)

In order to transform this expression into a more convenient
form, we make use of the multinomial theorem and obtain after
some basic mathematical manipulations (a detailed derivation
is omitted here due to space constraints)

pγS(ζ) =
P∑

ν=1

µν∑
τ=1

NRX−1∑
n=0

∑
{βj,k,t}∈Un

(
NRX

{βj,k,t}

)
ξν,τ

Γ(τ) ετ
ν

× ζτ+f({βj,k,t})−1 e−ζ (g({βj,k,t})+ 1
εν

) h({βj,k,t})
(−1)n Γ(NRX − n)

,

(12)

where the inner summation has to be taken over all possible
index tuples{βj,k,t} ∈ Un (1 ≤ j ≤ P , 1 ≤ k ≤ µj , 0 ≤ t ≤



k − 1) with

Un =

{βj,k,t}

∣∣∣∣∣∣{βj,k,t} ∈ NΦ
0 ∧

P∑
j=1

µj∑
k=1

k−1∑
t=0

βj,k,t = n

 ,

(13)
whereΦ =

∑P
j=1

µj (µj+1)
2 denotes the number of elements

belonging to one such tuple. Furthermore, we have introduced
for brevity the short-hand notations

f({βj,k,t}) =
P∑

j=1

µj∑
k=1

k−1∑
t=0

t βj,k,t (14)

g({βj,k,t}) =
P∑

j=1

µj∑
k=1

k−1∑
t=0

βj,k,t

εj
(15)

h({βj,k,t}) =
P∏

j=1

µj∏
k=1

k−1∏
t=0

(
ε−t
j

ξj,k

Γ(t + 1)

)βj,k,t

(16)

and
(

NRX

{βj,k,t}
)

denotes a multinomial coefficient, which might
be calculated as(

NRX

{βj,k,t}

)
=

NRX !∏P
j=1

∏µj

k=1

∏k−1
t=0 βj,k,t!

. (17)

Based on (12), it is now straightforward to determine the mgf
of γS by means of the Laplace transform as

MγS(s) =
P∑

ν=1

µν∑
τ=1

NRX−1∑
n=0

∑
{βj,k,t}∈Un

(
NRX

{βj,k,t}

)

× (−1)n ξν,τ Γ(τ + f({βj,k,t}))
Γ(τ) ετ

ν Γ(NRX − n)

× h({βj,k,t})(
g({βj,k,t}) + 1

εν
− s
)τ+f({βj,k,t})

. (18)

Finally, it should be noted that also the cdf ofγS can easily
be obtained from (12) by using [8] eq. (3.381,1), but due to
space restrictions this result is not explicitly given here.

IV. PERFORMANCEANALYSIS

A. System Capacity

The system capacity in the Shannon sense generally reflects
the maximum average spectral efficiency that can be achieved
without any delay or complexity constraints. Similarly to [6],
[9], it can be calculated in our case as (in bits per channel
use)C = RC

∫∞
0

log2 (1 + ζ) pγS(ζ) dζ. Inserting the pdf of
γS according to (12) and using the well-known integration
result from [10] appendix B, we obtain

C = RC

P∑
ν=1

µν∑
τ=1

NRX−1∑
n=0

∑
{βj,k,t}∈Un

(
NRX

{βj,k,t}

)
ξν,τ

Γ(τ) ετ
ν

×h({βj,k,t}) Γ(τ + f({βj,k,t}))
Γ(NRX − n) e−g({βj,k,t})− 1

εν

τ+f({βj,k,t})∑
i=1

×
Γ(i− τ − f({βj,k,t}), g({βj,k,t}) + 1

εν
)

(−1)n (g({βj,k,t}) + 1
εν

)i
, (19)

with Γ(·, ·) as the upper incomplete gamma function, which
might be easily evaluated numerically by exploiting that [8]

Γ(−n, x) =
(−1)n

Γ(n + 1)

E1(x)− e−x
n−1∑
j=0

(−1)j Γ(j + 1)
xj+1

 .

(20)
for n ∈ N0 and withE1(x) as the exponential integral.

B. Average Symbol Error Rate

1) Exact Analysis:It is well-known that the exact average
SER in case of regularM -PSK can be calculated as [11]

Ps =
1
π

∫ M−1
M π

0

MγS

(
−

sin2
(

π
M

)
sin2 φ

)
dφ (21)

and the one in case ofM -QAM as

Ps =
4
π

(
1− 1√

M

) ∫ π/2

0

MγS

(
−

3
2 (M−1)

sin2 φ

)
dφ

− 4
π

(
1− 1√

M

)2 ∫ π/4

0

MγS

(
−

3
2 (M−1)

sin2 φ

)
dφ.

(22)

Inserting the corresponding expression for the mgf according
to (18), it can be seen that the calculation of the average
SERs can in both cases be traced back to the solution of
integrals of the formI1 =

∫ a

0
sin2 φ

sin2 φ+c
dφ. Such a solution

is given in [11] appendix 5A, for example, thus yielding the
desired expressions, which are not explicitly provided here due
to space constraints. However, since these exact expressions
are relatively complex and not very intuitive, we also derive
the corresponding high SNR asymptotes in the following.

2) High SNR Asymptotics:For determining the high SNR
asymptotes, we pursue an approach similar to the one pre-
sented in [12]. For̄γ →∞, (3) may be written as

Mγi(−s) =
(

m

γ0

)α 1∏P
ν=1 λµν

ν

1
sα

+ o

(
1
sα

)
, (23)

with the short-hand notation

α = m rank(ΛTX), (24)

and whereo(x) represents an (arbitrary) function for which
limx→0 o(x)/x = 0. Hence, it is quite obvious that the pdf
and cdf ofγi can be expressed in this case as

pγi(ζ) =
(

m

γ0

)α 1∏P
ν=1 λµν

ν

ζα−1

Γ(α)
+ o

(
ζα−1

)
(25)

as well as

Fγi
(ζ) =

(
m

γ0

)α 1∏P
ν=1 λµν

ν

ζα

Γ(α + 1)
+ o (ζα) . (26)

The pdf of the combined SNRγS is then given by

pγS(ζ) =
NRX

Γ(α)

(
m

γ0

)α NRX
(

P∏
ν=1

λµν
ν

)−NRX

ζα NRX−1

(Γ(α + 1))NRX−1
+ o

(
ζα NRX−1

)
(27)



and the corresponding mgf consequently can be determined
by means of the Laplace transform of (27) as

MγS(s) =
NRX

Γ(α)

(
m

(−s) γ0

)α NRX
(

P∏
ν=1

λµν
ν

)−NRX

Γ(α NRX)

(Γ(α + 1))NRX−1
+ o

(
1

sα NRX

)
. (28)

The actual high SNR asymptotes can then be obtained by
neglecting the higher-order termso

(
1

sαNRX

)
in (28) and

inserting the resulting expression in (21) and (22), respectively
[12]. This requires in both cases the solution of integrals of
the form

I2(θ, n) =
∫ θ

0

sin2n φdφ, n ∈ N0. (29)

In this regard, we find by capitalizing on [8] eq. (2.513,1)

I2(θ, n) =
θ

22n

(
2n

n

)
+

(−1)n

22n−1

×
n−1∑
k=0

(−1)k

(
2n

k

)
sin (2 θ (n− k))

2 (n− k)
(30)

and hence the high SNR asymptotes forM -PSK are given by

Ps ≈
ϑ

π sin2αNRX
(

π
M

) 1
γ̄α NRX

I2

(
M−1

M π, α NRX

)
(31)

whereas in case ofM -QAM we find

Ps ≈ 4
π

ϑ

γ̄α NRX

(
1− 1√

M

) (2 (M − 1)
3

)α NRX

×
[
I2

(
π
2 , α NRX

)
−
(
1− 1√

M

)
I2

(
π
4 , α NRX

)]
,

(32)

where we have introduced for brevity the short-hand notation

ϑ =
NRX (m Rc NTX)α NRX Γ(α NRX)

Γ(α) (Γ(α + 1))NRX−1
(∏P

ν=1 λµν
ν

)NRX
. (33)

Based on these high SNR asymptotes, it can easily be seen
that in the high SNR regimePS ∼ γ̄−α NRX , i.e., the diversity
order with receive antenna selection is exactly the same as for
a full-complexity system without antenna selection.

V. NUMERICAL RESULTS

Fig. 1 shows the average SER of our system versus the
average SNR in case that the well-known Alamouti scheme is
employed in a spatially correlated Rayleigh-fading channel and
for NRX ∈ {1; 2}. In this regard, we assume an exponential
correlation model, i.e., the (i, j)-th entry ofΛTX is given by
[ΛTX ]i,j = ρ|i−j|, whereρ represents a correlation coefficient
for adjusting the degree of correlation. As can be seen, there
is basically a perfect match between calculated and simulated
values, what verifies the accuracy of our theoretical analysis.
Furthermore, it can be seen that the high SNR asymptotes
(which are only given for QPSK for clarity) are really tight
in the high SNR regime and that spending an additional

receive antenna element leads to considerably smaller SERs,
particularly at high SNRs, where the additional diversity gain
that can be obtained this way is most effective.

Fig. 2 depicts the system capacity for two different orthogo-
nal STBCs andNRX ∈ {1; 2; 4}. Obviously, the capacity can
be significantly increased with more receive antennas, but this
increase is clearly smaller for the STBC with four transmit
antennas and rate1/2 than for the Alamouti code withNTX

= 2 andRC = 1. This is because with more transmit antennas
the variations of the individual SNRsγi according to (1) are
less severe due to the higher diversity order that we get this
way, so that the probability that the SNRγS of the selected
branch is very high is decreasing as well.

In Figs. 3 and 4, we compare the performance of our
system with that of a full-complexity system where always
all antennas are used as well as a SIMO system with selection
combining. Please note that the SIMO system basically repre-
sents a special case of the system considered herein withNTX

= 1 andRC = 1 whereas the capacity and average SER for the
full complexity system can be taken from [9], for instance.
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Fig. 3 shows the capacity difference between the afore-
mentioned schemes and the considered system for various
different degrees of spatial correlation. Obviously, with two
receive antennas the SIMO system with selection combining
leads to a slightly lower capacity than our system, but if
more receive antenna elements are available, the capacity
surprisingly is higher, despite the reduced training and signal
processing complexity required in that case in practice. This
can be explained in the same way as before, namely that
the variations of the individual SNRsγi are reduced if an
orthogonal STBC is used, thus reducing the probability that
γS is very high as well. This is an important result, of course,
which reveals that simultaneously using diversity techniques at
both the transmitter and the receiver-side might actually lead
to a performance degradation—at least from a capacity point
of view. However, with increasing spatial correlation (i.e., for
ρ → 1), the capacity difference between the two schemes
is diminishing since in this case the diversity advantage of
orthogonal STBC is diminishing as well.
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Fig. 3. Capacity difference between a full-complexity system as well as a
SIMO system with selection combining and the considered MIMO system
with antenna selection forNTX = 2, RC = 1, m = 1, and γ̄ = 10 dB.
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In case of the average SER performance, we have a different
situation, as can be seen from Fig. 4. Here, our system with
antenna selection clearly outperforms the SIMO system with
selection combining due to the higher diversity order that we
have in this case. This is because the average SER performance
is mainly governed by deep fades, which, however, can be
drastically reduced with higher diversity. Another thing that
can be observed from Fig. 4 is that there is a significant SNR
gap between the full-complexity system and our system with
antenna selection, which can be explained by the fact that more
power can be extracted with the full-complexity system since
always all receive antenna elements are used.

VI. CONCLUSION

We have conducted a comprehensive performance analysis
of MIMO systems employing orthogonal STBC combined
with receive antenna selection in semi-correlated Nakagami-m
fading channels. We have derived exact analytical closed-form
expressions for the capacity as well as the average SER in case
of M -QAM andM -PSK modulation and we have determined
the corresponding high SNR asymptotes, which are somewhat
more intuitive than the exact expressions. Furthermore, we
have shown that from a capacity point of view using only one
transmit antenna might lead to a superior performance than
employing orthogonal STBCs, despite the lower implementa-
tion complexity required in that case. Numerical results were
shown to be in perfect agreement with simulation results, thus
verifying the validity of our theoretical analysis.
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