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Abstract—We analyze the performance of multiple-input mul- the well-known Alamouti scheme is employed. Besides, the
tiple-output (MIMO) systems employing orthogonal space-time effects of channel estimation errors on the performance of
block codes (STBC) combined with receive antenna selection in orthogonal STBCs combined with receive antenna selection

Nakagami-m fading channels with possible spatial correlation - . .
at the transmitter-side. We derive exact analytical closed-form recently have been investigated in [5]. However, to the best

expressions for the system capacity as well as the average symboPf our knowledge, a comprehensive performance analysis of
error rate (SER) in case of M-PSK and M-QAM modulation, orthogonal STBCs with receive antenna selection has not been

respectively. Furthermore, we determine the corresponding high presented yet, what we therefore will do herein. In particular,
SNR asymptotes, which are significantly simpler than the exact \ye gerive exact analytical closed-form expressions for the

results while providing important insights into the SER perfor- ity of h t I th bol
mance at high SNRs. Finally, we compare the performance of our capacity of such a system as well as the average symbo

system with the performance of a full-complexity system without €ITor rates (SER) in case af/-ary quadrature amplitude
receive antenna selection as well as a single-input multiple-output modulation (//-QAM) and M-ary phase shift keying M-

system with selection combining and we verify the validity of our PSK), considering Nakagami-fading channels with possible
analytical results by means of Monte-Carlo simulations. spatial correlation at the transmitter-side. In addition, we
compare the performance of our system with the performance
of a full-complexity system as well as a single-input multiple-
Multiple-input multiple-output (MIMO) systems offer nu- output (SIMO) system with selection combining.
merous benefits over conventional single-input single-outputThe remainder of this paper is structured as follows: In
(SISO) systems, such as the potential to facilitate considera8lgction Il we outline our system and channel model whereas
higher data rates or to significantly improve the reliability ofhe statistics of the effective SNR at the receiver-side are de-
a wireless link. However, this superior performance generaligrmined in Section Ill. The actual capacity and SER analysis
comes along with an increased signal processing complexgypresented in Section IV, followed by numerical results in
as well as substantially higher hardware requirements, wisdction V as well as some concluding remarks in Section VI.
hence represents a limiting factor for the production and wide-
spread deployment of low-cost MIMO devices. A promising Il. SYSTEM AND CHANNEL MODEL
approach for partially alleviating these drawbacks is to makeWe consider a frequency-flat block-fading MIMO system
use of some form of antenna selection, whereby many of théth Ny transmit antennas amiiz x receive antennas. In the
advantages offered by MIMO systems can be retained whdéscrete-time equivalent baseband domain, the channel can be
the number of required radio frequency (RF) chains and henoedeled by the matriH € CNrx*Nrx where the 4, j)-th
the costs and the complexity can be significantly reduced [Elementh; ; corresponds to the channel coefficient between
In this paper, we analyze the performance of MIMO systentise j-th transmit antenna and theth receive antenna. The
employing orthogonal space-time block codes (STBC) comhase of each channel coefficient is assumed to be uniformly
bined with antenna selection at the receiver-side. This migtistributed in[0; 2 7) whereas the magnitudes are supposed to
be an attractive solution for the downlink of cellular networkdye Nakagamin variates with unity average power gain and
for example, where the complexity and the costs of the mobil#eger fading parameter.. Furthermore, the channel might
user equipment generally should be kept as low as possibkhibit spatial correlation at the transmitter-side, i.e., entries
whereas this is usually only of secondary importance for tlstanding in the same row &f might be correlated. Please note
base stations. Previous studies dealing with the combinationtiot the assumption of spatial correlation at the transmitter-side
antenna selection and orthogonal STBCs have mainly focusedy is valid in urban scenarios, for example, where a base
on performing antenna subset selection at the transmitter-sidation (transmitter) is mounted on top of the roofs whereas
(see for example [2], [3] and references therein), but only vetlge mobile terminals (receivers) are located in rich-scattering
few results have been reported concerning the performancesafironments due to surrounding buildings, cars, and so on.
orthogonal STBC with receive antenna selection so far. In [4], The transmitter encodes the data to be sent by means of
for instance, the authors present upper bounds on the averageorthogonal STBC with code rafe- while the receiver—
bit error rates for binary modulation in uncorrelated Rayleigiwhich is assumed to have perfect knowledge of the channel—
fading as well as an exact expression for the special case thalects always only the best out of the availablgx receive

I. INTRODUCTION



antenna elements for processing the faded received signalsere the expansion coefficienfs, can be calculated as
which are additionally perturbed by additive white Gaussian

noise. It is well-known that after appropriate signal combining, FH gui—k | P 1
orthogonal STBCs transform a MIMO system into a set of & = — 11 Das H 1 1 (7)
equivalent SISO channels [6] and in case thatittie receive (1 = k! Osts vzl (I+se) B
antenna is selected, it can easily be shown that these equivalent ! =
SISO channels have the effective signal-to-noise ratio (SNFﬂw probability density function (pdf) of, then corresponds
Nrx Nrx to the inverse Laplace transform &f,,(—s) and is given by
Vi = hz =V hz (1)
RCNTX ;‘ ol OZ‘ al’ Py ekl o
pwi(<)=zzj’7ke 9, (=20 (8)

with the short-hand notatio, = 7/(Rc NTX): wherey de-
notes the average SNR per receive antenna. Clearly, selecting
the best antenna hence corresponds to selecting the anteghere’(-) denotes the well-known gamma function [8]. The
for which this effective SNR is maximized. corresponding cumulative distribution function (cdf), (¢)

_ SNR STATISTICS = fo D+, (t) dt consequently can be obtained by capitalizing

on [8] eqs (3.381,1) and (8.352,1) as well as the fact that
A Nakagamlm variate with integer fading parameterand 7 ¢, =1 (what can readily be checked by com-

unity average power gain generally can be considered as
square root of the sum &m squared i.i.d. Gaussian rando ?mg (6) with (3)) as

variables with zero mean and variancé2m) [7]. In presence By k=1 n c\' _<
of spatial correlation at the transmitter-side only, it is thereforeF’,, () = Z Z Z =] e 9, (>0
. . .. T t—|— 1) €;
straightforward to model the magmtude of the coefficient j=1k=1t= - 9
hij as |hijl = /> |t |2, where z} ; is the ¢, j)-th . , ©)

_ As already mentioned before, the receiver always selects
entry of the Ngx x Nrx random matrixX; (I =1,...,m). the antenna for which the effective SNR according to (1) is

These random matrices are i.i.d. circularly symmetric Compl?ﬁ(axmaed i.e., the actual SNRs of the selected branch is
Gaussian distributed with zero mean and covariance mataf\sen by vs = max{y1, vx.,} Due to the statistical
- 1y )2y« RX

1

m (AT)? ® INRX.) where Arx represents the normalized, Idependence of al};, the cdf of~s is then simply given by

transmit correlation matrix whose diagonal elements are NRX - XrRx
; o ; ; . () =1L Fy (€) = (F4,(¢))™"* and the corresponding

equal to onel,, is the identity matrix of dimensiom and df hence Can be expressed as

® denotes the matrix Kronecker product. Please note that 81

elements ofArx can be directly related to various physical 0 B Npx—1

propagation parameters such as the antenna spacing, m¥& mBalC) = ac Fioe(€) = Nrx py, () (F5,(C)) , ¢=0.

angle of arrival, and angular spread, for instance, what makes . _ (10)

this model especially suitable for theoretical investigations. Inserting (8) and (9) in (10) and using [8] eq. (1.111), we get

Following the approach outlined in [7], it can be shown that

the moment-generating function (mgf) of is given by P &N [Ny — 1) &, ¢!
e Pl = Nax 3D, > ( )rme
My, (s) = [det(Ingy 522 Arx)] @) v=lr=l n=0
o m i k=1g (g) .

where det-) denotes the determinant operator. In the follow- e _ZZ ke e % |(11)
ing, we assume without loss of generality thety has P =1 k=1 t=0 r(t
distinct non-zero eigenvalues, Ao, ..., Ap with multiplici-
ties a1, as, ..., ap, respectively. Consequently, it can easilyn order to transform this expression into a more convenient
be seen that (2) can be rewritten as form, we make use of the multinomial theorem and obtain after

P 1 some basic mathematical manipulations (a detailed derivation

M, (—s) = 1_[1 Txse)™ (3) is omitted here due to space constraints)

P 1237 NRX —1
where we have introduced for brevity the short-hand notatiop§s(<) — Z Z Z Z ({25%)(}) F(EV,)T
jiokost 7)€

Mj — maj (4) v=117=1 n=0 {ﬁ }EU
o= My ) L B —C(y({ﬂg D) W8y t})
m 1T NRX — n)
Expanding this term into partial fractions, we obtain 1 (12)
P Ky
Z Z (6) where the inner summation has to be taken over all possible

=1 k=1 1+863 m index tuples{B, s} €U, 1 <j<P,1<k<p;0<t<



k — 1) with with T'(,-) as the upper incomplete gamma function, which

P might be easily evaluated numerically by exploiting that [8]
U, = {{@'M} Bk} ENGAD DN " Bike=mn ¢, ¢ ) G- (2) o ”Z_:l (-1)70( +1)
j=1 k=1 t=0 —n,z)=——2— |Ey(z)—e :
J 1t 13) F(TL + 1) = i+l
where @ = Zle #:uatl) denotes the number of elements _ o (20)
belonging to one such tuple. Furthermore, we have introductd 7 € No and with E;(z) as the exponential integral.
for brevity the short-hand notations B. Average Symbol Error Rate
L 1) Exact Analysis:lt is well-known that the exact average
FUBikal) = DD D Bk (14) SER in case of regulab/-PSK can be calculated as [11]
7=1k=11t=0 M—1 2
0 k— 1 T sin (l)
P uj k-1 M
B, N Y = 2 R
9{Bjkt}) = Z Z jek t (15) m™ Jo s sin ¢
J=lk=11=0 and the one in case df/-QAM as
P Py k-1 fk Bik,t ) 5
M{Birt) = ] (Gj_t T - > (16) 41 ™/ I
j=1k=1t= (t +1) P = 1 Mg . 2 d¢
j=1k=1t=0 ™ VM) Jo sin“ ¢
and ({]g_ix}) denotes a multinomial coefficient, which might 4 1 \2 [m/4 Ty
gkt - 1— — do.
be calculated as - ( \/M) /O s sinZ o ¢
N, Ngx!
( X > = (D) (22)
{Bj .t} [T ITZs [Tico Bjik.d!

Inserting the corresponding expression for the mgf according
Based on (12), it is now straightforward to determine the mgd (18), it can be seen that the calculation of the average

of vs by means of the Laplace transform as SERs can in both cases be tr_aged back to the solution of
P py Npx—1 N integrals of the formZ, = [ sifj;‘¢ﬁ(: d¢. Such a solution
M, (s) = ZZ Z Z < RX > is given in [11] appendix 5A, for example, thus yielding the
v=1r=1 n=0 {B;r.}€Un {Bint} desired expressions, which are not explicitly provided here due
(1) &r D(r + F{Bjs}) to space constraints. However, since these exact expressions

are relatively complex and not very intuitive, we also derive
the corresponding high SNR asymptotes in the following.
h({8)k,t}) 2) High SNR AsymptoticsFor determining the high SNR
(9({5J,k,t}) + % _ S) asymptc_)tes, we pursue an approach S|m|lar to the one pre-

v sented in [12]. For — oo, (3) may be written as

Finally, it should be noted that also the cdf ¢f can easily <m>“ 1 1 < 1 )
;o (23
I1

F(T) € F(NRX — n)

T+F({Bj,%,¢}) -(18)

be obtained from (12) by using [8] eq. (3.381,1), but due to M, (—s) =

" : ) AT . P\ g
space restrictions this result is not explicitly given here. v=1""v
with the short-hand notation
IV. PERFORMANCEANALYSIS
a=mrankArx), (24)

A. System Capacity

The system capacity in the Shannon sense generally reﬂélﬁg whereo(z) represents an (arbitrary) function for which
the maximum average spectral efficiency that can be achied@8z—oo(z)/z = 0. Hence, it is quite obvious that the pdf
without any delay or complexity constraints. Similarly to [6];':lnd cdf ofy; can be expressed in this case as

H H . - @ a_l

[9], it cim be %illculated in our case as (|n'b|ts per channel o (C) = m\* 1 < Fo(c ) 25
use)C = Rc [ 109, (14 ¢) pys(¢) d¢. Inserting the pdf of i ) T T(@)
~s according to (12) and using the well-known integration I v=1
result from [10] appendix B, we obtain as well as

m\ 1 ce
= e E.(Q)=(— oy
c-RYY Y Y (i) 75 10=(3) T 3 Tasn 0 @9
v=lr=1 n=0 {Bjk+}€Un Binad/ TV The pdf of the combined SNRs is then given by

W3 DT+ F({Biaa)) 5D N aNrx [ P ~Nrx
X I‘(NRX — ’I'L) e—g({ﬁj,k,t})—$ ; pr(C) = % <’:Z> (I[l /\,Lljy>
T — T — iktf)s ikt L @ INRX — B
" F( f({ﬁ],k, }) g({ﬁ],k, }) + eu) (19) ¢ N 1 +O (CaNRX71) -

(D" (9({Byna}) + )’ 7 (D(a +1))Vex—t



and the corresponding mgf consequently can be determimedeive antenna element leads to considerably smaller SERs,

by means of the Laplace transform of (27) as particularly at high SNRs, where the additional diversity gain
«Nax [ P ~Npx that can be obtained this way is most effective.
M (s) = Nrx ( m ) (H /\,,,U> Fig. 2 depicts the system capacity for two different orthogo-
s I'(a) \(—5)v b nal STBCs andVix € {1;2;4}. Obviously, the capacity can
I'(a Npx) 1 be significantly increased with more receive antennas, but this
S < — ) (28) increase is clearly smaller for the STBC with four transmit
(D (e + 1)) 5o N

antennas and rate/2 than for the Alamouti code witiVx
The actual high SNR asymptotes can then be obtained byY and R = 1. This is because with more transmit antennas
neglecting the higher-order terms(_—~-) in (28) and the variations of the individual SNRg according to (1) are
inserting the resulting expression in (21) and (22), respectivégss severe due to the higher diversity order that we get this
[12]. This requires in both cases the solution of integrals @fay, so that the probability that the SNRR of the selected
the form branch is very high is decreasing as well.
6 In Figs. 3 and 4, we compare the performance of our
Z>(0,n) = / sin®" ¢d¢, n € No. (29) system with that of a full-complexity system where always
) U0 o all antennas are used as well as a SIMO system with selection
In this regard, we find by capitalizing on [8] eq. (2.513,1) ¢ombining. Please note that the SIMO system basically repre-

0 [/2n (—=1)" sents a special case of the system considered hereimViyith
o(0,n) = 92n < n) 92n—1 =1 andR¢s = 1 whereas the capacity and average SER for the
n—1 ) full complexity system can be taken from [9], for instance.
XZ(—I)’“ 2n\ sin (26 (n — k)) (30)
= k 2(n—k)
and hence the high SNR asymptotes #6rPSK are given by 10 E==~:g i:.\‘, ,
¥ 1 o 107 S

PS% 2aNRrx (L) ,S/QNRX IQ(A%V[ITF’O(NRX) (31)

M

7 sin

whereas in case af/-QAM we find

b A9y (2T
s ;W(_W) 3

Average SER
=
o

g1
1 — QPSK (th
< |22 (5.0 Nnx) = (1= ) T2 (5.0 Naw) | T
107°H - 16-QAM (theory) d
(32) - - Asymptotics '
o Simulation

where we have introduced for brevity the short-hand notation ;- ‘ ‘ ‘ L
N 0 5 10 15 20 25 30
Nrx (m R. NTX)Q RX F(a NRX) (33) Average SNR [dB]
S
INa) (T(a+ 1))NRX*1 (Hf;l )\‘,j“) = Fig. 1. Average SER for several different modulation schemes in a Rayleigh
- fading channels = 1) with p=0.5, N7 x =2, Rc =1, andNgx € {1;2}.

Based on these high SNR asymptotes, it can easily be seen
that in the high SNR regim&s ~ 3y~ Nrx j.e., the diversity 10 ‘

. . . —_ N__=1 (theor
order with receive antenna selection is exactly the same as for rx = 1 (theory)

. . . - - NRX = 2 (theory)
a full-complexity system without antenna selection. 8| .- N =4 (theory) a

9 =

o Simulation

V. NUMERICAL RESULTS

Fig. 1 shows the average SER of our system versus the
average SNR in case that the well-known Alamouti scheme is
employed in a spatially correlated Rayleigh-fading channel and
for Nrx € {1;2}. In this regard, we assume an exponential
correlation model, i.e., thei (j)-th entry of Arx is given by
[Arx]i; = pl*=31, wherep represents a correlation coefficient
for adjusting the degree of correlation. As can be seen, there :
is basically a perfect match between calculated and simulated ‘ ‘ ‘ ‘ ‘
values, what verifies the accuracy of our theoretical analysis. 0 5 10, 15 20 25 30

. . verage SNR [dB]
Furthermore, it can be seen that the high SNR asymptotes
(which are only given for QPSK for clarity) are really tightrig. 2. capacity versus average SNR for different numbers of receive antenna
in the high SNR regime and that spending an additionglements in uncorrelated Rayleigh-fading channeis<(1, p = 0).

Capacity [bits per channel use]




Fig. 3 shows the capacity difference between the afore-In case of the average SER performance, we have a different
mentioned schemes and the considered system for varisitsation, as can be seen from Fig. 4. Here, our system with
different degrees of spatial correlation. Obviously, with twantenna selection clearly outperforms the SIMO system with
receive antennas the SIMO system with selection combinisglection combining due to the higher diversity order that we
leads to a slightly lower capacity than our system, but iave in this case. This is because the average SER performance
more receive antenna elements are available, the capa@tynainly governed by deep fades, which, however, can be
surprisingly is higher, despite the reduced training and sigrdtastically reduced with higher diversity. Another thing that
processing complexity required in that case in practice. Thian be observed from Fig. 4 is that there is a significant SNR
can be explained in the same way as before, namely tlgaip between the full-complexity system and our system with
the variations of the individual SNRs; are reduced if an antenna selection, which can be explained by the fact that more
orthogonal STBC is used, thus reducing the probability thpbwer can be extracted with the full-complexity system since
~s is very high as well. This is an important result, of courselways all receive antenna elements are used.
which reveals that simultaneously using diversity techniques at

) . . ; VI. CONCLUSION
both the transmitter and the receiver-side might actually lead _ )
to a performance degradation—at least from a capacity point//é ave conducted a comprehensive performance analysis

of view. However, with increasing spatial correlation (i.e., fo?f, MIMO, systems employ_ing.orthogonal STBC combingd
p — 1), the capacity difference between the two schemddth receive antenna selection in semi-correlated Nakagami-

is diminishing since in this case the diversity advantage fading channels. We have derived exact analytical closed-form
orthogonal STBC is diminishing as well. expressions for the capacity as well as the average SER in case

of M-QAM and M-PSK modulation and we have determined
the corresponding high SNR asymptotes, which are somewhat
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