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Abstract—In this work, we propose a new algorithm to
exploit the communication channel sparseness via channel tap
masking for blind channel identification using multi-channel
frequency least mean squares algorithm (MCFLMS). The pro-
posed technique has the advantage of significantly enhancing the
tracking capability of MCFLMS and making it robust against
channel order overestimation. In order to correctly assess the
performance of MCFLMS in the context of blind maximum ratio
combining (BMRC), we propose a new assessment criterion that
is independent of inherent channel estimation ambiguities. We
provide BER simulation results for a 1×2 SIMO DVB-T2 system
which show the effectiveness of the tap masking on BMRC using
MCFLMS, especially when synchronization information is not
available in the BMRC block.

I. INTRODUCTION

In [1], a BMRC receiver architecture is proposed which
has the advantage of being transmit signal independent. Only
limited information about the underlying system is required,
therefore such a unit can be employed in almost any system.
A comparison between the conventional diversity receiver and
the BMRC architecture is shown in Fig. 1.
A conventional diversity receiver applies synchronization and
channel state information (CSI) estimation separately for each
antenna signal in a first standard-dependent demodulation part.
In contrast, BMRC works without symbol synchronization
and acquires the CSI through blind channel identification. In
[1], MCFLMS is used for blind channel identification. The
MCFLMS is a second-order statistics (SOS) iterative blind
channel estimation method exploiting the cross-relations (CR)
[2] between the antenna signals. Originally developed in [3],
[4], MCFLMS has the advantage of a notable reduction in
computational complexity due to the employment of frequency
domain adaptive filtering [5].
In [6], [7], the sparseness of the communication channel is
exploited to enhance the performance of the multi-channel
least mean squares (MCLMS) approach. The estimated chan-
nel sparseness is measured using the l1 norm, ||ĥ||11. A penalty
function, λ||ĥ||11, with weighting sparseness factor λ is added
to the original cost function to force the algorithm to converge
to the most sparse solution.
In our work, we propose a new algorithm to exploit the
sparseness of a communication channel. A sparse communi-
cation channel consists typically of a few significant channel
taps which are unequal to zero. The remaining taps are non-
significant i.e. they have negligible contribution to the actual
channel coefficient vector, but only appear in the estimated
channel coefficient vector because of the noise. We detect

and track the locations of the non-significant taps in the
estimated time-domain channel coefficient vector. We then
apply a mask on the whole estimated channel vector, where
the non-significant taps are suppressed. Detection of those non-
significant taps is done by means of tracking specific properties
of each estimated channel tap in the time domain. This
technique can be applied to blind and non-blind estimation
algorithms and is not limited to sparse channels.
This paper is organized as follows: in Section II, we give a
review of the blind channel identification (BCI) approaches
which are based on SOS. We also derive the main steps of the
MCFLMS. In Section III, we introduce the proposed scheme
for channel tap masking and demonstrate its effectiveness. In
Section IV, we present a new criterion to assess the perfor-
mance of the MCFLMS algorithm when used for BMRC. In
section V, we present BER simulation results for BMRC in
a DVB-T2 system, where we show the effectiveness of the
proposed channel tap masking approach when applied on top
of MCFLMS. In Section VI, we draw the final conclusions of
this work.

II. BLIND CHANNEL IDENTIFICATION

There exists an extensive literature for BCI, see for example
[8], [9]. However, these algorithms were mostly applied to
acoustic signals in static channels. In contrast, in this work we
deal with fast fading communication channels where fast con-
vergence of the BCI has to be guaranteed in order to track the
channel successfully. Therefore, we select an algorithm which
is based on SOS, as opposed to algorithms based on HOS [8],
[9]. Although the HOS provides higher estimation accuracy,
the SOS have the advantage of a faster convergence rate. The
family of the SOS approaches includes the CR algorithm [2].
The idea behind the CR approach is straightforward: in the
noise-free case, given ri is the received signal at antenna i,
hi is the discrete time impulse response of the communication
channel between the transmitter and the ith receiver and n is
the time index, the received signal at antenna i can be written
as:

ri (n) = s (n) ∗ hi (n) i = 1, ...M, (1)

where M is the number of antennas at the receiver side.
Convolving ri (n) with hj (n) and rj (n) with hi (n) yields

ri (n) ∗ hj (n) = s (n) ∗ hi (n) ∗ hj (n)

= rj (n) ∗ hi (n) (2)



(a) Conventional multi-antenna maximum ratio combining (b) Blind multi-antenna maximum ratio combining

Fig. 1. Comparison between the receiver architecture of conventional multi-antenna system (left) and the proposed blind diversity receiver (right)

The CR problem statement is then to find the two sets of
channel coefficients hj and hi, which satisfy (2). A very
good summary of this family of algorithms can be found
in [10]. Motivated by the desire to apply BCI to real life
systems, thus requiring the algorithms to be both adaptive and
computationally simple, an iterative implementation of the CR
algorithm was developed in [11]–[13], namely the MCLMS
approach. In solving the problem in an iterative manner, the
authors use the Least Mean Squares (LMS) algorithm and
later Newton’s algorithm to speed up the convergence. In
[12], the authors derive an expression for an optimal step
size blind multi-channel LMS in the Wiener sense. In our
work, we use the iterative version of the CR approach which is
adapted to work in the frequency domain as in [3], [4]. We use
this particular adaptation because of its attractive reduction in
computational complexity accompanied by frequency domain
adaptive filtering [5].

A. Outline of the iterative solution
In order to proceed with the outline of the iterative solution,

we first put down the system model we shall use. The received
signal vector ri(n) at antenna i is defined as

ri,N×1 (n) =
[
ri(n) ri(n− 1) ... ri(n−N + 1)

]T
.

(3)
We define Hi(n) as the time domain Toeplitz channel matrix
and zi(n) as the additive noise vector in the time domain. We
use L to denote the number of channel taps in the impulse
response. N denotes the observation window i.e. the number of
samples considered per iteration where N ≥ L. The received
signal vector ri,N×1(n) can then be written as

ri,N×1(n) = Hi,N×N+L−1(n)sN+L−1×1(n) + zi(n) (4)

If we consider the multipath model depicted in (4) taking an
observation interval N = L, (4) can be rewritten for a single
antenna as

ri,N×1 (n) = Hi,N×2N−1(n)s2N−1×1 + zi (n) . (5)

In the following we assume N = L.
We define the time domain channel coefficient vector hi as

hi,N×1(n) =
[
hi(n, 0) hi(n, 1) ... hi(n,N − 1)

]T
.

(6)
The CR between two antennas in the noise free case, i and j,
can now be put into the form

rTi (n) hj(n) = rTj (n) hi(n). (7)

Equation (7) is used to define a cost function for the LMS
algorithm. The cost function incorporates the CR error signal

between every pair of received antenna signals. The CR error
signal eij for antennas i and j is defined as

eij(n) = rTi (n) hj(n)− rTj (n) hi(n) ∀i 6= j. (8)

The cost function can be defined as the summation of the
squared CR error among all M antennas:

J (n) =

M−1∑
i=1

M∑
j=i+1

|eij(n)|2. (9)

B. Multi-Channel Frequency Least Mean Squares (MCFLMS)
In [3], [4], the authors describe the derivation and the main

steps of the MCFLMS approach. MCFLMS operates in block-
wise mode i.e. one iteration includes processing a block of N
samples. The frequency domain gradient, at the kth iteration
of the algorithm is computed as

∇iJ̃k =
∂J̃k

∂
˜̂hk

∗

i

(10)

where J̃k is the cost function of MCFLMS in the frequency
domain. The frequency domain gradient is computed as a
function of the frequency domain CR error ẽkji, as opposed
to the time domain CR error in (8).

ẽkji = W̃
10

N×2N ×
[
D̃
k

rj W̃
10

2N×N
˜̂hki − D̃

k

riW̃
10

2N×N
˜̂hkj
]
, (11)

where the main diagonal of the diagonal matrix D̃
k

rj is
composed of the FFT of the signals received on antenna j.
W̃

10

N×2N and W̃
01

2N×N are defined in [3], [4] as masks for
the mathematical representation of the overlap save operation.
They can be computed as follows:

W̃
10

N×2N = FN×NW10
N×2NF−12N×2N , (12)

W̃
01

2N×N = F2N×2NW01
2N×NF−1N×N , (13)

where W10
N×2N and W01

2N×N are time domain masks defined
as

W10
N×2N =

[
IN×N 0N×N

]
(14)

W01
2N×N =

[
0N×N
IN×N

]
. (15)

The update equation of the MCFLMS approach is then written
as:

˜̂hki =
˜̂hk−1i − µ∇iJ̃k

=
˜̂hk−1i − µW̃

10

N×2N

M∑
j=1

D̃
k∗

rj W̃
01

2N×N ẽkji, (16)



where µ is the step size parameter and ˜̂hki is the frequency
domain estimate of the channel impulse response of the ith
antenna at the kth iteration of the algorithm. The normalized
update equation can then be written as

˜̂hki =

˜̂hk−1i − µW̃
10

N×2N
∑M
j=1 D̃

k∗

rj W̃
01

2N×N ẽkji
√
N
∥∥∥˜̂hk

∥∥∥ , (17)

where ˆ̃hkMN×1 =
[

ˆ̃hk
T

1
ˆ̃hk

T

2 ...
ˆ̃hk

T

M

]T
. In this work

we consider using a simplified variable step size formula as
explained in [12] for the noiseless case

µk =
ˆ̃hk−1

H

∇J̃k−1∥∥∥∇J̃k−1∥∥∥2 . (18)

Moreover, we apply a sparseness penalty function according
to [6], [7] to make use of the sparseness of the time domain
communication channel to achieve a better performance. The
sparseness of a channel h can be measured by the lp norm
||h||pp where 0 < p ≤ 1. The idea is to minimize the lp norm
of the estimated channel. In [6], [7], the CR cost function is
extended by adding the sparseness constraint with weight λ:

JSC (k) = J (k) + λ ‖h‖pp . (19)

The update equation can then be written as

ĥ
k

i = IFFT
(

ˆ̃hki
)

+ λh
k

i , (20)

where

h
k

i = p sign(IFFT
(

ˆ̃hki
)

)
(
|IFFT

(
ˆ̃hki
)
|+ ε

)p−1
. (21)

The parameter 0 < ε << 1 avoids division by zero. FFT
is then applied on the final estimate to be used in the next
iteration k + 1. Our channel tap masking technique notably
reduces the l1 norm weight dependency on the signal to noise
ratio (SNR) and Doppler frequency. In fact, λ can be set
to a constant value over large SNR and Doppler frequency
ranges, making our BMRC algorithm independent of these
channel conditions. Therefore in this work, we use the l1 norm
with p = 1. We also use a fixed sparseness weighting factor
λ = 0.003 to weight the sparseness penalty function according
to [6], [7].
A well known criteria to assess the performance of the CR
approach is the so-called normalized root projection mean
square error (NRPMSE). The NRPMSE is computed as [14]

NRPMSEk =

∥∥∥∥∥∥hk − ĥ
kH

hk

ĥ
kH

ĥ
k

ĥ
k

∥∥∥∥∥∥ , (22)

where ĥ
k

MN×1 =
[

ĥ
kT

1 ĥ
kT

2 ... ĥ
kT

M

]T
, ĥ

k

i =

IFFT (
ˆ̃hki ) and hk is the true stacked channel vector at the

kth iteration of the algorithm.

III. CHANNEL TAP MASKING

We verified the effectiveness of the proposed channel tap
masking approach in a DVB-T2 system [15]. A DVB-T2 signal
is received by a 1×2 SIMO system. An 8192 point FFT is used
with a guard interval of 2048 samples. 6817 out of the 8192
frequency points carry information and 16QAM modulation
is used on these subcarriers. We assume a frequency-selective
Rayleigh fading channel, which follows the Jakes model,
namely the Typical Urban 6 tap channel (TU6) as defined in
[16]. At the given sampling rate of 9.14MHz, this corresponds
to a total channel length of 47 taps. We considered a Doppler
frequency of 100Hz. At an RF carrier frequency of 600MHz,
it corresponds to a user moving at a speed of 180km/h.
To demonstrate the proposed algorithm, we refer to Fig. 2,
where the estimated magnitude and phase differences between
every two successive iterations are plotted for a significant
channel tap (left) and a non-significant channel tap (right). We

(a) Significant tap (b) Non-significant tap

Fig. 2. Phase variation and amplitude values of the estimated MCFLMS
channel taps at SNR=10dB, fD = 100Hz and N = 512 samples

observe that the phase difference of a non-significant channel
tap exhibits large non-monotonous changes compared to the
variations recorded for a significant channel tap. Our approach
is to monitor the average magnitude of these phase difference
variations, and hence deduce which channel taps are significant
and which are not. A channel tap mask is built based on
comparing these values to a predetermined threshold. The
masking operation, carried out in each MCFLMS iteration,
is summarized in the following steps

1) At the kth iteration of the algorithm, compute the phase
difference, ∆φk(m), for the mth estimated tap of ĥ

k
as

∆φk(m) = arg ĥk(m)− arg ĥk−1(m), (23)

where ĥk(m) = ĥ(n0 + kN,m).
2) Compute a time moving exponential average change

value ∆φ̄k(m) as

∆φ̄k(m) = ξ∆φ̄k−1(m) + (1− ξ)|∆φk(m)|, (24)

where ξ is the forgetting factor parameter of the aver-
aging process.

3) Compare ∆φ̄k(m) to a predetermined threshold κφ. If
∆φ̄k(m) > κφ, the mth estimated tap is set to zero. The
resulting impulse response is used for the next iteration
step.

The mask is calculated in every iteration. If a new echo
appears, which previously was regarded as a non-significant



Fig. 3. NRPMSE of MCFLMS estimate with and without masking for a
TU6 channel at SNR=10dB and fD = 100Hz

channel tap, the algorithm is able to detect the new significant
channel tap relying on the average phase difference.
In practical systems, the number of channel taps L is esti-
mated. As explained in [17], channel order overestimation is
a common challenge in the problem of BCI. In our work, we
found that channel tap masking can enhance the estimation
performance significantly in case of channel order overes-
timation. In Fig. 3, we compare the NRPMSE for the two
cases with and without masking. The threshold parameter is
set independent of the SNR to κφ = π

4 . In this work, we don’t
estimate L but we assume a case where L is overestimated.
A receiver window size of L = 512 samples is used at the
receiver side, which means the TU6 channel is overestimated
by 465 taps. We can see that the masking approach can handle
a very high degree of channel order overestimation.

IV. NEW PERFORMANCE ASSESSMENT CRITERION

In the literature of BCI based on SOS, the NRPMSE
criterion is widely used to assess the performance of the BCI
algorithm, see for example [3], [4], [6]. As shown in (22),
the NRPMSE measures the distance between the true channel
and the estimated channel impulse responses scaled by the
ambiguity factor. In our application, we care about how good
the estimate is for the combining process. Equalization is done
anyway in a subsequent SISO demodulator which typically
relies on pilot information. In case of channel order over-
estimation, the NRPMSE can diverge, due to the additional
ambiguity of a possible delay time that is common for all
channel estimates ĥ (n, l). On the other hand, a common delay
of all channel estimates has no influence on the combining
performance. For this purpose, we propose a new assessment
criterion, that measures the average SNR loss of BMRC
compared to perfect MRC. First, we define the output SNR
after combining the received signals with ĥ

k
according to

MRC assuming AWGN with zero mean and same variance for
all receive antennas. For convenience, we compute the output

Fig. 4. SNR loss criteria computed at SNR= 10dB and fD = 100Hz

SNR in the frequency domain

Γ
(

ˆ̃hk
)

=

Nactive∑
u=1

|
∑M
i=1 h̃

k(u)
ˆ̃
hk

∗
(u)|2∑M

i=1 |
ˆ̃
hk(u)|2

(25)

The output SNR loss can then be computed as

Γloss

(
ˆ̃hk
)

=
Γ
(

h̃
k
)

Γ
(

ˆ̃hk
)

=

∑Nactive

u=1

|
∑M

i=1
h̃k(u)h̃k∗

(u)|2∑M

i=1
|h̃k

(u)|2∑Nactive

u=1

|
∑M

i=1
h̃k(u)

ˆ̃
hk∗ (u)|2∑M

i=1
|ˆ̃hk(u)|2

, (26)

where ˆ̃
hk(u) is the uth frequency bin of the estimated channel

at the kth iteration.
Fig. 4 depicts the SNR loss for MCFLMS without masking,
with masking and with genie-aided masking at an SNR of
10dB and a Doppler frequency of 100Hz. In the genie aided
case, the positions of the significant taps are assumed to be
known and the non-significant taps are suppressed after each
iteration. As shown in Fig. 4, about 0.2dB performance gain
is achieved using the masking operation. We also notice a
negligible degradation in performance compared to the genie
aided case where the tap locations are assumed to be known.
This in turn proves that tracking the difference in phase
information is a reliable method for identifying the non-
significant taps.

V. BIT ERROR RATIO RESULTS

In this section, we present BER results for a 1×2 DVB-T2
SIMO system, which are based on the simulation parameters
mentioned in section III. We compare the case of conventional
frequency domain combining (FDC) with perfect CSI at the
receiver side against the cases of BMRC with and without
channel tap masking. The FDC architecture is shown in Fig.
1a. The 1st demodulator part includes an FFT block to
convert the received signals to the frequency domain.
BMRC, (Fig. 1b), is realized by convolving the received
signals with their respective channel matched filters in the



Fig. 5. BER performance for a TU6 channel and fD = 100Hz

time domain ci(n,m) = ĥ∗i (n,−m). In the synchronous
mode of BMRC, every OFDM symbol is convolved with
one matched filter obtained from the arithmetic mean of the
MCFLMS estimates (for the corresponding antenna i) over the
respective OFDM symbol time. This implies that coarse time
synchronization to the OFDM symbol is available.
On the other hand, in the asynchronous mode of BMRC, syn-
chronization to the OFDM symbols is not assumed. Instead,
blocks of N = 512 received samples are combined using the
instantaneous estimates from the MCFLMS. As mentioned
earlier, this corresponds to a channel order overestimation
by 465 taps. Fig. 5 depicts the BER performance of BMRC
with/without masking and with/without synchronization. For
all cases, perfect channel state information (CSI) is assumed to
be available for zero forcing (ZF) equalization of the combined
signal.
In Fig. 5, we can see a notable degradation in performance
when synchronization information is not available at the
receiver side and the masking is switched off. This is because
combining different parts of the OFDM symbol with different
matched filter coefficients induces inter-carrier interference
(ICI) in the combined signal yk.
We can see the BER improvement brought by applying the
masking to the estimated channel taps. More than 1dB SNR
gain can be achieved in the asynchronous case with tap
masking as it effectively suppresses estimation noise hence
yielding less ICI on the combined signal [1]. By applying the
masking operation on the estimated channel coefficients, the
gap between the synchronous and the asynchronous receiver
is almost eliminated. We also observe that only 0.2dB perfor-
mance loss is obtained relative to the case of FDC with perfect
CSI knowledge.

VI. CONCLUSION

In this work, we proposed a new method to enhance the
performance of MCFLMS using channel tap masking. The
new method can be applied to blind and non-blind estimation
algorithms. It makes use of the sparse nature of wireless
communication channels, which are characterized by a long

impulse response in which only a few dominant taps and the
remaining are almost zero. Using channel tap masking, the
MCFLMS has shown a more robust performance especially
in the case of channel order overestimation. In addition,
we proposed a new criterion to evaluate the performance
of MCFLMS applied for BMRC. We presented BER results
which show the effectiveness of the new algorithm when
combined with MCFLMS and used for BMRC in a DVB-
T2 system. An improvement was observed especially in the
case when synchronization information is not available at the
combiner block of the receiver.
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