Institute of Telecommunications


Information on some of our current research activities.

Machine Learning for Communications

Can we "learn" to communicate?

Inspired by Shannon’s groundbreaking work on the fundamental limits of communications, we seek to solve the task of “reproducing at one point either exactly or approximately a message selected at another point” or, in other words, reliably transmitting a message from a source to a destination over a channel by the use of a transmitter and a receiver.

 (c) Sandia Labs, Flickr

We propose a thinking outside the box solution where we reinterpret transceiver signal-processing blocks (e.g., quantization, error correcting coding, modulation, detection) as neural networks, enabling data-driven communications systems that perpetually learn and adapt to any environment. We build the world’s first over-the-air communications system that solely consists of neural networks. In this spirit, we propose one holistic block that does it all using joint signal-processing for detection, synchronization and decoding so that the full information is transmitted within a single sequence (waveform).