Research

Institute of Telecommunications

Information on some of our current research activities.

Publications

  1. 2023

    1. T. Wild, A. Grudnitsky, S. Mandelli, M. Henninger, J. Guan, and F. Schaich, “6G Integrated Sensing and Communication: From Vision to Realization,” 2023 [Online]. Available: https://arxiv.org/abs/2305.01978
    2. C. Kestel, M. Geiselhart, L. Johannsen, S. ten Brink, and N. Wehn, “Automorphism Ensemble Polar Code Decoders for 6G URLLC,” 2023.
    3. M. Henninger, S. Mandelli, A. Grudnitsky, T. Wild, and S. ten Brink, “CRAP: Clutter Removal with Acquisitions Under Phase Noise,” 2023 [Online]. Available: https://arxiv.org/abs/2306.00598
    4. F. Euchner, T. Schneider, M. Gauger, and S. ten Brink, “ESPARGOS: An Ultra Low-Cost, Realtime-Capable Multi-Antenna WiFi Channel Sounder,” 2023.
    5. S. Dörner, J. Clausius, S. Cammerer, and S. Ten Brink, “Learning Joint Detection, Equalization and Decoding for Short-Packet Communications,” IEEE Transactions on Communications, vol. 71, no. 2, pp. 837–850, 2023 [Online]. Available: https://ieeexplore.ieee.org/document/9982554
    6. M. Henninger, S. Sengupta, S. Mandelli, and S. ten Brink, “Performance Evaluation of Array Calibration for Angle-of-Arrival-Based 5G Positioning,” in WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, 2023, pp. 1–6.
    7. M. Geiselhart, M. Gauger, F. Krieg, J. Clausius, and S. ten Brink, “Phase-Equivariant Polar Coded Modulation,” 2023 [Online]. Available: https://arxiv.org/abs/2305.01972
    8. M. Geiselhart, J. Clausius, and S. ten Brink, “Rate-Compatible Polar Codes for Automorphism Ensemble Decoding,” 2023 [Online]. Available: https://arxiv.org/abs/2305.01214
    9. S. Mandelli, M. Henninger, M. Bauhofer, and T. Wild, “Survey on Integrated Sensing and Communication Performance Modeling and Use Cases Feasibility,” 2023 [Online]. Available: https://arxiv.org/abs/2305.07144
  2. 2022

    1. M. Henninger, S. Mandelli, M. Arnold, and S. Ten Brink, “A Computationally Efficient 2D MUSIC Approach for 5G and 6G Sensing Networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022, pp. 210–215.
    2. M. Geiselhart, A. Elkelesh, J. Clausius, and S. ten Brink, “A Polar Subcode Approach to Belief Propagation List Decoding,” 2022 [Online]. Available: http://arxiv.org/abs/2205.06631
    3. M. Geiselhart, A. Elkelesh, J. Clausius, and S. ten Brink, “A Polar Subcode Approach to Belief Propagation List Decoding,” in 2022 IEEE Information Theory Workshop (ITW), 2022, pp. 243–248.
    4. M. Geiselhart, M. Ebada, A. Elkelesh, J. Clausius, and S. ten Brink, “Automorphism Ensemble Decoding of Quasi-Cyclic LDPC Codes by Breaking Graph Symmetries.” 2022 [Online]. Available: http://arxiv.org/abs/2202.00287
    5. M. Geiselhart, M. Ebada, A. Elkelesh, J. Clausius, and S. ten Brink, “Automorphism Ensemble Decoding of Quasi-Cyclic LDPC Codes by Breaking Graph Symmetries,” IEEE Communications Letters, pp. 1–1, 2022.
    6. F. Euchner, P. Stephan, M. Gauger, and S. ten Brink, “Channel Sounder with Over-the-Air Antenna Synchronization: Absolute Phase and Timing Calibration Using Known Transmitter Locations,” European Conference on Networks and Communications, 2022.
    7. F. Euchner, N. Süppel, M. Gauger, S. Dörner, and S. ten Brink, “Deep Learning for Uplink CSI-based Downlink Precoding in FDD massive MIMO Evaluated on Indoor Measurements,” 2022 [Online]. Available: https://arxiv.org/abs/2209.10977
    8. J. Ney et al., “FPGA-Based Trainable Autoencoder for Communication Systems,” in Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Virtual Event, USA, 2022, p. 154 [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3490422.3502337
    9. F. Euchner, P. Stephan, M. Gauger, and S. ten Brink, “Geometry-Based Phase and Time Synchronization for Multi-Antenna Channel Measurements,” 2022.
    10. M. Geiselhart, A. Zunker, A. Elkelesh, J. Clausius, and S. ten Brink, “Graph Search based Polar Code Design,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, pp. 387–391.
    11. M. Geiselhart, A. Zunker, A. Elkelesh, J. Clausius, and S. ten Brink, “Graph Search based Polar Code Design.” Nov-2022 [Online]. Available: http://arxiv.org/abs/2211.16010
    12. F. Euchner, P. Stephan, M. Gauger, S. Dörner, and S. ten Brink, “Improving Triplet-Based Channel Charting on Distributed Massive MIMO Measurements,” 23rd IEEE International Workshop on Signal Processing Advances in Wireless Communications, 2022.
    13. M. Geiselhart et al., “Learning Quantization in LDPC Decoders.” 2022 [Online]. Available: http://arxiv.org/abs/2208.05186
    14. M. Geiselhart et al., “Learning Quantization in LDPC Decoders,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022, pp. 467–472.
    15. E. Fuchs, T. Handte, and S. ten Brink, “Low-Complexity Self-Interference Cancellation for Frequency Division Duplex in Adjacent Channels,” in 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022, pp. 1349--1354.
    16. J. Clausius, M. Geiselhart, and S. ten Brink, “Optimizing Serially Concatenated Neural Codes with Classical Decoders.” 2022.
    17. M. Henninger et al., “Probabilistic 5G Indoor Positioning Proof of Concept with Outlier Rejection,” in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 249–254.
    18. S. Mandelli, M. Henninger, and J. Du, “Sampling and Reconstructing Angular Domains with Uniform Arrays,” IEEE Transactions on Wireless Communications, 2022.
  3. 2021

    1. F. Euchner, M. Gauger, S. Dörner, and S. ten Brink, “A Distributed Massive MIMO Channel Sounder for ‘Big CSI Data’-driven Machine Learning,” in 25th International ITG Workshop on Smart Antennas (WSA 2021), Sophia Antipolis, France, 2021 [Online]. Available: https://ieeexplore.ieee.org/document/9739175
    2. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Automorphism Ensemble Decoding of Reed—Muller Codes,” IEEE Transactions on Communications, pp. 1–1, 2021.
    3. S. Dörner, S. Rottacker, M. Gauger, and S. ten Brink, “Bit-wise Autoencoder for Multiple Antenna Systems,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/9562222
    4. C. Senger, “CRC error detection for CAN XL,” in 17th international CAN Conference (iCC), Baden-Baden, Germany, 2021.
    5. S. Miao and C. Senger, “Dual-containing Alternant Codes for Applications in the Calderbank-Shor-Steane Construction,” in 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 2021, pp. 12–20.
    6. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Iterative Reed-Muller Decoding,” 2021 [Online]. Available: http://arxiv.org/abs/2107.12613
    7. M. Arnold et al., “MaxRay: A Raytracing-based Integrated Sensing and Communication Framework,” 2021 [Online]. Available: http://arxiv.org/abs/2112.01751
    8. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “On the Automorphism Group of Polar Codes,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1230–1235.
    9. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “On the Automorphism Group of Polar Codes,” 2021 [Online]. Available: http://arxiv.org/abs/2101.09679
    10. F. Euchner and C. Senger, “PERIDOT Codes: Replacing Identifiers, Sequence Numbers and Nonces with Permutations,” in 30th Biennial Symposium on Communications (BSC 2021), Saskatoon, SK, Canada, 2021.
    11. J. Clausius, S. Dörner, S. Cammerer, and S. ten Brink, “Serial vs. Parallel Turbo-Autoencoders and Accelerated Training for  Learned Channel Codes.” 2021 [Online]. Available: http://arxiv.org/abs/2104.14234
    12. J. Clausius, S. Dörner, S. Cammerer, and S. ten Brink, “Serial vs. Parallel Turbo-Autoencoders and Accelerated Training for Learned Channel Codes,” in 2021 11th International Symposium on Topics in Coding (ISTC), 2021, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/9594130
    13. M. B. Fischer et al., “Wiener Filter versus Recurrent Neural Network-based 2D-Channel Estimation for V2X Communications,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp. 458–465 [Online]. Available: https://ieeexplore.ieee.org/document/9575620
    14. M. B. Fischer et al., “Wiener Filter versus Recurrent Neural Network-based 2D-Channel Estimation for V2X Communications,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp. 458–465 [Online]. Available: https://ieeexplore.ieee.org/document/9575620
  4. 2020

    1. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Automorphism Ensemble Decoding of Reed-Muller Codes,” 2020 [Online]. Available: http://arxiv.org/abs/2012.07635
    2. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “CRC-Aided Belief Propagation List Decoding of Polar Codes,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2020, pp. 395–400 [Online]. Available: https://ieeexplore.ieee.org/document/9174249
    3. T. Uhlemann, S. Cammerer, A. Span, S. Doerner, and S. ten Brink, “Deep-learning Autoencoder for Coherent and Nonlinear Optical Communication,” in Photonic Networks; 21th ITG-Symposium, 2020, pp. 1–8.
    4. M. Gauger, M. Arnold, and ten B. Stephan, “Drone-Based Spatial MIMO Measurements in Three Dimensions,” 2020.
    5. M. Ebada, S. Cammerer, A. Elkelesh, M. Geiselhart, and S. ten Brink, “Iterative Detection and Decoding of Finite-Length Polar Codes in Gaussian Multiple Access Channels,” in 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 683–688 [Online]. Available: https://ieeexplore.ieee.org/document/9443374
    6. M. Gauger, M. Arnold, and S. ten Brink, “Massive MIMO Channel Measurements and Achievable Rates in a Residential  Area.” 2020 [Online]. Available: http://arxiv.org/abs/2002.09452
    7. D. Verenzuela, E. Björnson, X. Wang, M. Arnold, and S. ten Brink, “Massive-MIMO Iterative Channel Estimation and Decoding (MICED) in the Uplink,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 854–870, Feb. 2020 [Online]. Available: https://ieeexplore.ieee.org/document/8873655
    8. S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. ten Brink, “Trainable Communication Systems: Concepts and Prototype,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5489–5503, Sep. 2020 [Online]. Available: https://ieeexplore.ieee.org/document/9118963
    9. S. Dörner, M. Henninger, S. Cammerer, and S. ten Brink, “WGAN-based Autoencoder Training Over-the-air,” in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/9154335
    10. S. Dörner, M. Henninger, S. Cammerer, and S. ten Brink, “WGAN-based Autoencoder Training Over-the-air,” in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/9154335
  5. 2019

    1. A. Elkelesh, M. Ebada, S. Cammerer, L. Schmalen, and S. ten Brink, “Decoder-in-the-Loop: Genetic Optimization-Based LDPC Code Design,” IEEE Access, vol. 7, pp. 141161–141170, 2019 [Online]. Available: https://ieeexplore.ieee.org/document/8846017
    2. A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink, “Decoder-Tailored Polar Code Design Using the Genetic Algorithm,” IEEE Transactions on Communications, vol. 67, no. 7, pp. 4521–4534, Jul. 2019 [Online]. Available: https://ieeexplore.ieee.org/document/8680016
    3. M. Ebada, S. Cammerer, A. Elkelesh, and S. ten Brink, “Deep Learning-Based Polar Code Design,” in 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019, pp. 177–183 [Online]. Available: https://ieeexplore.ieee.org/document/8919804
    4. M. Arnold, S. Dörner, S. Cammerer, S. Yan, J. Hoydis, and S. ten Brink, “Enabling FDD Massive MIMO through Deep Learning-based Channel Prediction.” 2019 [Online]. Available: http://arxiv.org/abs/1901.03664
    5. A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink, “Genetic Algorithm-based Polar Code Construction for the AWGN Channel,” in SCC 2019; 12th International ITG Conference on Systems, Communications and Coding, 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8661304
    6. C. Senger, “Improved Iterative Decoding of Product Codes Based on Trusted Symbols,” in 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 1342–1346 [Online]. Available: https://ieeexplore.ieee.org/document/8849469
    7. X. Wang, S. Cammerer, and S. Ten Brink, “Near-Capacity Detection and Decoding: Code Design for Dynamic User Loads in Gaussian Multiple Access Channels,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 7417–7430, Nov. 2019 [Online]. Available: https://ieeexplore.ieee.org/document/8804231
    8. M. Arnold, J. Hoydis, and S. t. Brink, “Novel Massive MIMO Channel Sounding Data applied to Deep Learning-based Indoor Positioning,” in SCC 2019; 12th International ITG Conference on Systems, Communications and Coding, 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8661318
    9. C. Senger, “On List Decoding of Generalized Reed-Solomon Codes Under Partial Codeword Knowledge,” in SCC 2019; 12th International ITG Conference on Systems, Communications and Coding, 2019, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8661300
    10. D. Tandler, S. Dörner, S. Cammerer, and S. ten Brink, “On Recurrent Neural Networks for Sequence-based Processing in Communications,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 537–543 [Online]. Available: https://ieeexplore.ieee.org/document/9048728
    11. M. Arnold and S. t. Brink, “Properties of Measured Massive MIMO Channels using Different Antenna Geometries,” in WSA 2019; 23rd International ITG Workshop on Smart Antennas, 2019, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8727203
    12. S. Cammerer, X. Wang, Y. Ma, and S. t. Brink, “Spatially Coupled LDPC Codes and the Multiple Access Channel,” in 2019 53rd Annual Conference on Information Sciences and Systems (CISS), 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8692899
    13. X. Wang, M. Arnold, and S. t. Brink, “TDD and FDD Massive MIMO: Channel Coherence and Operation Region,” in WSA 2019; 23rd International ITG Workshop on Smart Antennas, 2019, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8727218
    14. M. Arnold, S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Towards Practical FDD Massive MIMO: CSI Extrapolation Driven by Deep Learning and Actual Channel Measurements,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 1972–1976 [Online]. Available: https://ieeexplore.ieee.org/document/9048863
    15. M. Arnold, S. Dörner, S. Cammerer, J. Hoydis, and S. T. Brink, “Towards Practical FDD Massive MIMO: CSI Extrapolation Driven by Deep Learning and Actual Channel Measurements,” 2019.
    16. M. Widmaier, M. Arnold, S. Dorner, S. Cammerer, and S. ten Brink, “Towards Practical Indoor Positioning Based on Massive MIMO Systems,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8891273
    17. M. Widmaier, M. Arnold, S. Dörner, S. Cammerer, and S. ten Brink, “Towards Practical Indoor Positioning Based on Massive MIMO Systems,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8891273
    18. M. Widmaier, M. Arnold, S. Dorner, S. Cammerer, and S. ten Brink, “Towards Practical Indoor Positioning Based on Massive MIMO Systems,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8891273
  6. 2018

    1. C. Senger and R. Bohara, “A Linear Algebraic Approach to Subfield Subcodes of GRS Codes,” in 2018 IEEE International Symposium on Information Theory (ISIT), 2018, pp. 6–10 [Online]. Available: https://ieeexplore.ieee.org/document/8437645
    2. M. Arnold, J. Pfeiffer, and S. t. Brink, “Area Rate Evaluation based on Spatial Clustering of massive MIMO Channel Measurements,” in WSA 2018; 22nd International ITG Workshop on Smart Antennas, 2018, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8385445
    3. K. Klaiber, S. Cammerer, L. Schmalen, and S. t. Brink, “Avoiding Burst-like Error Patterns in Windowed Decoding of Spatially Coupled LDPC Codes,” in 2018 IEEE 10th International Symposium on Turbo Codes  Iterative Information Processing (ISTC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8625312
    4. A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief Propagation List Decoding of Polar Codes,” IEEE Communications Letters, vol. 22, no. 8, pp. 1536–1539, Aug. 2018 [Online]. Available: https://ieeexplore.ieee.org/document/8396299
    5. S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep Learning Based Communication Over the Air,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132–143, Feb. 2018 [Online]. Available: https://ieeexplore.ieee.org/document/8214233
    6. S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep Learning Based Communication Over the Air,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132–143, Feb. 2018 [Online]. Available: https://ieeexplore.ieee.org/document/8214233
    7. A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “OFDM-Autoencoder for End-to-End Learning of Communications Systems,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8445920
    8. A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “OFDM-Autoencoder for End-to-End Learning of Communications Systems,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8445920
    9. M. Arnold, S. Dorner, S. Cammerer, and S. Ten Brink, “On Deep Learning-Based Massive MIMO Indoor User Localization,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8446013
    10. M. Arnold, S. Dörner, S. Cammerer, and S. ten Brink, “On Deep Learning-Based Massive MIMO Indoor User Localization,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8446013
    11. S. Schibisch, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “Online Label Recovery for Deep Learning-based Communication through Error Correcting Codes,” in 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8491189
    12. S. Schibisch, S. Cammerer, S. Dörner, J. Hoydis, and S. ten Brink, “Online Label Recovery for Deep Learning-based Communication through Error Correcting Codes,” in 2018 15th International Symposium on Wireless Communication Systems (ISWCS), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8491189
    13. S. Cammerer, M. Ebada, A. Elkelesh, and S. ten Brink, “Sparse Graphs for Belief Propagation Decoding of Polar Codes,” in 2018 IEEE International Symposium on Information Theory (ISIT), 2018, pp. 1465–1469 [Online]. Available: https://ieeexplore.ieee.org/document/8437581
    14. M. Arnold, X. Wang, and S. T. Brink, “Subcarrier-interlaced FDD for faster-than-TDD channel tracking in massive MIMO systems,” in WSA 2018; 22nd International ITG Workshop on Smart Antennas, 2018, pp. 1–7 [Online]. Available: https://ieeexplore.ieee.org/document/8430496
    15. C. Senger and H. K. Shivakumar, “Subfield Subcodes of Tamo–Barg Locally Recoverable Codes,” in 2018 29th Biennial Symposium on Communications (BSC), 2018, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/8494698
  7. 2017

    1. M. Arnold, M. Gauger, and S. ten Brink, “Evaluating massive MIMO precoding based on 3D-channel measurements with a spider antenna,” in 2017 International Symposium on Wireless Communication Systems (ISWCS), 2017, pp. 134–139 [Online]. Available: https://ieeexplore.ieee.org/document/8108098
    2. A. Elkelesh, S. Cammerer, M. Ebada, and S. ten Brink, “Mitigating clipping effects on error floors under belief propagation decoding of polar codes,” in 2017 International Symposium on Wireless Communication Systems (ISWCS), 2017, pp. 384–389 [Online]. Available: https://ieeexplore.ieee.org/document/8108145
    3. T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-based channel decoding,” in 2017 51st Annual Conference on Information Sciences and Systems (CISS), 2017, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/7926071
    4. S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep learning-based communication over the air,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, pp. 1791–1795 [Online]. Available: https://ieeexplore.ieee.org/document/8335670
    5. S. Dorner, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep learning-based communication over the air,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, pp. 1791–1795 [Online]. Available: https://ieeexplore.ieee.org/document/8335670
    6. S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling Deep Learning-Based Decoding of Polar Codes via Partitioning,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1–6 [Online]. Available: https://ieeexplore.ieee.org/document/8254811
  8. 2016

    1. A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Improving Belief Propagation decoding of polar codes using scattered EXIT charts,” in 2016 IEEE Information Theory Workshop (ITW), 2016, pp. 91–95 [Online]. Available: https://ieeexplore.ieee.org/document/7606802
    2. C. Senger and F. R. Kschischang, “Syndrome-based Decoding of Evaluation Codes without Chien Search,” in 28th Biennial Symposium on Communications (BSC 2016), Kelowna, BC, Canada, 2016.
    3. S. Cammerer, V. Aref, L. Schmalen, and S. ten Brink, “Triggering wave-like convergence of tail-biting spatially coupled LDPC codes,” in 2016 Annual Conference on Information Science and Systems (CISS), 2016, pp. 93–98 [Online]. Available: https://ieeexplore.ieee.org/document/7460483
    4. S. Cammerer, L. Schmalen, V. Aref, and S. ten Brink, “Wave-like decoding of tail-biting spatially coupled LDPC codes through iterative demapping,” in 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC), 2016, pp. 121–125 [Online]. Available: https://ieeexplore.ieee.org/document/7593089
  9. 2014

    1. C. Senger, V. Sidorenko, and A. Chaaban, “On multi-trial Forney-Kovalev decoding of concatenated codes,” Advances in Mathematics of Communications, vol. 8, no. 1, pp. 1--20, Jan. 2014 [Online]. Available: https://doi.org/10.3934%2Famc.2014.8.1
    2. C. Senger, “Sierpinski Prefactors in the Guruwami-Sudan Interpolation Step,” in 2014 International Zurich Seminar on Communications, Zurich, Switzerland, 2014, pp. 83–86 [Online]. Available: http://e-collection.library.ethz.ch/eserv/eth:8192/eth-8192-01.pdf
  10. 2013

    1. D. E. Lazich, C. Senger, and M. Bossert, “A Corrected Disproof of the Strong Simplex Conjecture,” in SCC 2013; 9th International ITG Conference on Systems, Communication and Coding, 2013, pp. 1–5 [Online]. Available: https://ieeexplore.ieee.org/document/6469334
  11. 2012

    1. C. Senger, A. Zeh, Y. Fan, and S. Schober, “Adaptive End-to-End Network Coding based on Algebraic Codes,” in First International Workshop on Performance Evaluation and Modeling in Wireless Networks (PEMWN2012), Tunis, Tunisia, 2012.
    2. J. H. Weber, V. R. Sidorenko, C. Senger, and K. A. S. Abdel-Ghaffar, “Asymptotic single-trial strategies for GMD decoding with arbitrary error-erasure tradeoff,” Problems of Information Transmission, vol. 48, no. 4, pp. 324--333, Oct. 2012 [Online]. Available: https://doi.org/10.1134/S0032946012040023
  12. 2011

    1. V. R. Sidorenko, C. Senger, and M. Bossert, “Decoding in Weighted Combinatorial Metric,” in International Mathematical Conference “50 Years of IPPI,” Moscow, Russia, 2011.

Machine Learning for Communications

Can we "learn" to communicate?

Inspired by Shannon’s groundbreaking work on the fundamental limits of communications, we seek to solve the task of “reproducing at one point either exactly or approximately a message selected at another point”.  In other words, we seek to reliably transmit a message from a source to a destination over a channel using a transmitter and a receiver.

We propose a thinking-outside-the-box solution where we reinterpret transceiver signal-processing blocks (e.g., quantization, error correcting coding, modulation, detection) as neural networks, enabling data-driven communications systems that perpetually learn and adapt to any environment.

We built the world’s first over-the-air communications system that consists solely of neural networks. In this spirit, we propose one holistic block that does it all using joint signal-processing for detection, synchronization and decoding so that the information is completely transmitted within a single sequence (
waveform).

Current Research

Bit-wise Autoencoder Communication System Training

02:13

This video shows the training process of a bit-wise autoencoder communications system. The system tries to find optimal signals to transmit k=4 bit within n=2 real valued channel uses at the trained SNR of 3.85dB. On the left side one can see the currently used constellation and on the right side one can see the mutual information obtained at receiver side. The bottom heat map plots show the current decision regions of the learned receiver, where pink regions indicate a strong decision towards bit 0 and blue regions indicate a strong decision towards bit 1. It can be seen, that the system finally converges towards a constellation that differs from classical modulation schemes, like the comparable 16-QAM constellation, and is thereby able to transmit more information at this operational point. While these gains are well known in communications research as so called shaping gains, the possible game changer of a neural network based autoencoder system is, that it is able to optimize its signals over every kind of channel, including all unknown insufficiencies using data based training strategies.

For more information see the paper "Trainable Communication Systems: Concepts and Prototype" by S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis and S. ten Brink at ieeexplore.ieee.org where these results are based on.

Contact

This image shows Stephan ten Brink

Stephan ten Brink

Prof. Dr.-Ing.

Director

This image shows Christian  Senger

Christian Senger

Dr.-Ing.

Deputy Director

To the top of the page